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Abstract

In recent years the extraordinary behaviour in condensed matter materials such as high
temperature superconductors and heavy fermions has attracted much attention. Attempts
to understand it are mostly based on local and lattice models of strongly correlated elec-
trons. These systems show a rich behaviour with states of broken symmetry. In the strong
coupling regime the relevant models are, however, not easy to understand with standard
perturbative approaches. Renormalisation group methods in contrast constitute a reli-
able approach to describe these strong correlation effects. The objective of this thesis is
to contribute to (a) the development of renormalisation group methods for states with
broken symmetry and (b) the description of the low energy properties for certain specific
symmetry breakings.

The calculations presented are based on the Anderson impurity model (AIM) and
the Hubbard model. We develop and apply the numerical renormalisation group (NRG)
and the renormalised perturbation theory (RPT). The extension of these methods from
the local model to the lattice model is within the dynamical mean field theory (DMFT)
framework. First we focus on the application of NRG and RPT to local models. We study
magnetic symmetry breaking in the AIM in equilibrium and non-equilibrium. This includes
calculating dynamic response functions and all relevant quasiparticle parameters. We also
investigate the AIM with superconducting symmetry breaking in the medium. The analysis
is then extended to infinite dimensional lattice models by using the DMFT approach. Thus,
results are presented for field induced magnetic ordering and antiferromagnetic symmetry
breaking in the Hubbard model. We also give a preliminary study of the crossover from
weak to strong coupling in the attractive Hubbard model with superconducting symmetry

breaking.
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There is a theory which states that if ever
anyone discovers exactly what the Universe
is for and why it is here, it will instantly
disappear and be replaced by something
even more bizarre and inexplicable.
There is another theory which states that
this has already happened.

Douglas Adams

Introduction

In many fields of research, ranging from sociology over finance to biology and physics,
a fundamental concept is that of correlations between certain entities. When analysing
certain events, or the behaviour of a system in terms of its constituents, one often asks
to what degree the subunits of the system are correlated and what the implication of the
correlations are. In many cases in nature, the fundamental behaviour of an isolated con-
stituent is rather unspectacular, whereas the collective behaviour of the whole system can
show remarkable features. For illustration consider a living organism based on individual
cells or a magnetically ordered state formed from itinerant electrons. That such an organ-
ised state persists in spite of omnipresent natural fluctuations can often be understood in
terms of correlated behaviour.

This thesis deals with many-body systems in the field of condensed matter physics.
There, models of strongly correlated electrons have attracted an enormous amount of
attention in the last four decades. A number of materials, such as heavy fermions, high
temperature superconductors and mesoscopic systems like quantum dots, show behaviour
which can only be explained when strong local interactions are taken into account. These
strong electronic interactions can be of various kinds, such as direct Coulomb interactions
or mediated by exchange bosons, for instance lattice phonons. At low temperature, when
there are few thermal fluctuations, the quantum mechanical behaviour of these many-body
systems is most visible. Then they can assume a large variety of different states, such as
a normally conducting or insulating state, they can spontaneously order magnetically and
also become superconducting. It is this variety of phases with broken symmetry, which
makes these systems so interesting to study. The appearances of these different phases
can often be understood in terms of the high degree of correlation of the particles. A
small change in a parameter can alter the state of the system completely. Along certain
axes in the relevant parameter space, zero temperature quantum phase transitions can be
observed. The rich phase diagram of many of these systems is due to the delicate interplay
of kinetic and potential energy as well as that of charge and spin fluctuations. Often it is a
challenge to identify the dominant mechanism that drives the system into a certain state.

Before introducing the specific models to describe these systems of strongly correlated
electrons, we outline a few general considerations. It is remarkable that - as realised
in the 1920s and 1930s - in spite of the generally large Coulomb repulsion between two



2 Introduction

electrons in a solid state system at short distances, many metals are exceptionally well
described by a gas of non-interacting fermions. Experimental studies showed that the
electric and magnetic response of these materials is essentially that of a Fermi gas, however,
with effective parameters, slightly renormalised from their bare value. This phenomenon
could be understood through ideas dating back to ), who saw that a natural
extension of the Fermi gas is a Fermi liquid, which at low temperature shows excitations
of similar nature to the Fermi gas, albeit with renormalised parameters. The Fermi liquid
thus is an effective description of an interacting system. One of the main ideas is that
the low energy excitations are in a one to one correspondence with the original electronic
excitations. This description applies well for itinerant, metallic systems, such as copper,
but is even valid for insulators, where the band structure is such that the Fermi energy falls
into the gap. One reason that this works so well is not that the Coulomb energy for two
electrons is a small as compared to the kinetic energy, but that the positive background
charge leads to a screening of the interaction. Such a picture emerges most naturally for
largely overlapping atomic orbitals, which lead to wide conduction bands. The situation
changes, however, if the itinerant electrons belong rather to more localised orbitals, such as
in transition metals. Here the interaction plays a significant role if two or more electrons
occupy the same orbital. This leads to strong correlation effects, and as a result it can
happen that a material with a half filled band is actually an insulator because of the
interaction - this possibility was first pointed out by IM.Q.t.tl (I].9_4.d, Il9.6£i) It is remarkable
that the quasiparticle excitations of many of these strongly correlated systems are still well

characterised by Landau’s Fermi liquid theory.

In the 1960s various simple models for such situations were introduced. One model,
which is of paramount importance for condensed matter studies, is the Anderson impurity
model m ). It describes an atomic orbital (impurity) in which local Coulomb
interactions play an important role. It is surrounded by a non-interacting band of electrons,
which hybridises with this impurity. In the simplest case the impurity does not have
degenerate states (s-orbital) and can therefore maximally be occupied by two electrons with
opposite spin. The Anderson impurity model has served as a sensible model for physics
of dilute impurities in metals and forms the basis for understanding the celebrated Kondo
effect. It has been the subject of many theoretical studies and is accepted as the standard
model of locally strongly correlated electron systems. It has attracted renewed attention
in recent years, since it can be considered as an appropriate model for the description of

nanoscale quantum dot systems in certain instances.

A model which takes into account local Coulomb interactions on every site of a lattice
is the Hubbard model. This model was motivated by describing the basic magnetic and
electric properties of condensed matter materials in the 1960s. For real materials it is
maybe too simplified, but up to the present date it is one of the most important models for
studying strong correlation effects in matter. Revived interest in the model was generated
by the discovery of high temperature superconductors in the 1980s and more recently by



cold atomic gas systems in optical lattice, which apart from an additional confinement
potential have all the characteristics of the Hubbard model. For this thesis the Hubbard
model is considered as the standard lattice model of strong electron correlations, which due
to its rich phase diagram is worthwhile to study in detail. Moreover, it is, as the Anderson
impurity model, a good testing ground for methods of different kinds.

The simplicity of these models is both an advantage and a drawback. The first since
it allows for a fairly simple analysis in terms of few parameters, and yet a rich behaviour
in terms of broken symmetry phases can be explored. The obvious drawback is that in
order to model “real systems” and compare to experimental measurements other effects
such as orbital degeneracies, disorder, nearest neighbour interaction, lattice phonons, etc.
have to be taken into account. Some of these extensions can be incorporated without
major difficulties, whereas for others the methods we describe here become inapplicable in
practice. We want to stress that the purpose of this work is not to explain the properties
of a particular material. It is rather to discuss generic strong correlation effects and the
development of reliable methods. The emphasis for this is to include symmetry breaking
effects, since they lead to very interesting behaviour characteristic for these materials with
strongly correlated electrons.

In physics, a concept of paramount importance to understand the state of matter is that
of symmetry breaking. The concept is ubiquitous from cosmology and the generation of
matter over high energy physics and the fundamental interactions to the well known cases
in condensed matter physics such as magnetic ordering, superconductivity or simply the
actual condensation from gas to fluid and solid state ordered form. Generally, most systems
are invariant under a larger group of symmetry transformations at high temperature. This
is quite intuitive as strong thermal fluctuations tend to wash out any symmetry breaking
structure. At low temperature, however, it is possible to stabilise a certain state, such as
a ferromagnetic ordering which in turn breaks the rotational invariance. It is important to
note that the interactions of the particles are very important for an ordering transition. In
other words a non-interacting system of fermions does not order even at zero temperature
and simply remains a Fermi gas with the corresponding occupation rules. This is different
for bosons, which undergo Bose-Einstein condensation at low temperature. For a non-
interacting system of bosons, however, no truly superfluid state is adopted. In this thesis
we deal with systems of strongly interacting fermions mostly at low temperature. It is
therefore to be expected that a number of symmetry breakings can occur. Symmetry
breaking does not necessarily occur spontaneously for a certain temperature. We can
also bring a system into an ordered state by applying an external field which breaks the
symmetry. The simplest case in the context of strongly correlated electrons systems is to
subject the system to a magnetic field and study its paramagnetic response.

The strongly interacting nature of the electrons in these models poses severe difficulties
for an accurate analysis of their behaviour. Since the potential energy is by no means small
compared to the kinetic energy, it is more than questionable to analyse these models in
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terms of standard, weak coupling, perturbative methods. Therefore, theoretical research
has focused on the development of non-perturbative methods such as numerical techniques
like exact diagonalisation or Quantum Monte Carlo. Due to the exponential increase of
the underlying Hilbert space the application of these is, however, often limited to fairly
small system sizes. Another class of non-perturbative methods are renormalisation group
(RG) approaches, which were first developed in the 1960s and 70s, and have contributed
to the understanding of many strong coupling problems. Essentially one generates a trans-
formation by which the system is considered on different energy scales, and studies the
behaviour for successive applications of the transformation. This transformation is usu-
ally invoked by integrating out high energy degrees of freedom. One major aim is the
identification and characterisation of different low energy fixed points. This thesis focuses
on the application and development of the RG methods numerical renormalisation group
(NRG) and renormalised perturbation theory (RPT). Both are directly applicable to the
Anderson impurity model (AIM). In the beginning of the 1990s it was shown that in the
limit of large dimensions the Hubbard model can be described by an effective AIM, which
has to be determined self-consistently within the dynamical mean field theory (DMFT)
framework. With the help of the DMFT we can therefore use RPT and NRG to study the
Hubbard model and certain symmetry breakings.

Having introduced the relevant topics we can formulate the main goal of this thesis.
The objective of the work is twofold:

1. Advancement of Methods, i.e. to contribute to the development of the RG meth-
ods NRG and RPT and their extension to cases with symmetry breaking.

2. Physical insight, i.e. we want to understand the low energy behaviour of these

systems of strongly correlated electrons in states with broken symmetry.
The main unifying question of this thesis can then be stated:

e What are the properties of the quasiparticle excitations of strongly correlated fermions
in local and lattice models subject to certain symmetry breakings and how can we
analyse them?

Figure[l gives an overview of the structure and contents of the thesis in terms of models,
methods and applications. The thesis is divided into three parts. The first introduces the
models and methods, the second discusses results for the local models, and in the third
part results for the lattice models are presented. On the top of figure [l we can see the two
types of models under consideration. In practice, we will study the AIM as an impurity
model and the Hubbard model as a lattice model. We will give a brief introduction to them
in chapter 1, establishing the necessary notation. The analysis is in terms of a combination
of the RPT and NRG methods which are linked to the corresponding application (box in
figure [Tl) by a line. These methods as well as the DMFT are briefly introduced in chapter
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Figure 1: Scheme of relevant models, methods and their range of application.

2. Chapter 1 and 2 form the first part of the thesis. In the second part we study two types
of symmetry breaking in the AIM, in the spin and in the charge channel. The AIM does
not possess a spontaneously ordered state so the ordering is an induced one. In the spin
channel we study the influence of a magnetic field, which is the subject of chapter 3. It
will turn out that in order to describe measurements of the current in quantum dot system
in a magnetic field, the theory has to be extended to non-equilibrium and a two channel
model, which is the focus of chapter 4. The following chapter 5 considers a symmetry
breaking in the charge channel. The bath of the model is given by a BCS superconductor
there, and we study the effect of this on the impurity. The third part of the thesis deals
with correlated fermions in the lattice model. First we study symmetry breaking in the
spin channel. Chapter 6 deals with field induced magnetic ordering in the Hubbard model.
Spontaneous antiferromagnetic ordering in the doped lattice system is analysed in chapter
7. In chapter 8 we consider symmetry breaking in the charge channel and focus specifically
on spontaneous superconducting order in the attractive model.

Let us anticipate some of the main results of this work. For the locally correlated
systems with magnetic symmetry breaking we will see that a description in terms of field
dependent renormalised parameters allows one to characterise the free quasiparticles and
many static response quantities, the low temperature response, the low energy dynamics
and the behaviour in small but finite voltage. With the renormalised perturbation expan-
sions we can extend the analysis to higher energies and voltages, and it proves very useful
to base the considerations on the field dependent renormalised parameters. We also discuss
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NRG results for static and dynamic quantities in the equilibrium case, and the comparison
with corresponding results from RPT calculations gives good agreement. We show that
the situation for an impurity in a BCS superconductor can be described accurately with
the NRG method. In the locally repulsive case the lowest excitations correspond to bound
states in the superconducting gap and we give an accurate description of their position
and weight. We also analyse the ground state transition which occurs with changing the
system parameters, and present results for spectral functions.

In the third part of the thesis we focus on the symmetry breaking in lattice models
within the DMFT description. When studying the paramagnetic response of the Hubbard
model to a homogeneous magnetic field in terms of static and dynamic response functions,
we find regimes with qualitatively different behaviour. At half filling we observe metam-
agnetic behaviour accompanied by a field induced metal insulator transition. In the doped
case no metamagnetic behaviour occurs, but the spin dependent effective masses of the
quasiparticles differ markedly. As for the local models the description in terms of quasi-
particles with field dependent renormalised parameters proves to be useful here. We also
give a detailed analysis of the nature of the renormalised quasiparticle in a metallic anti-
ferromagnet and develop an accurate description of the renormalised quasiparticle bands.
Renormalised parameters can be deduced as before, but the symmetry breaking nature
leads to expressions for the spectral quasiparticle weight and the effective mass enhance-
ment different from the ones in the normal state. For the attractive system we study the
broken symmetry state with superconducting order. We show that the crossover of static
quantities and spectral functions from the BCS superconducting regime at weak coupling
to the BEC regime of tightly bound fermions at strong coupling occurs smoothly.

The author is aware that the thesis is of considerable length. As a variety of different
issues are addressed, it seemed difficult in the preparation to restrain the length of the
document without loosing clarity in the exposition. However, as much of the discussion
of the results in each chapter is self-contained, apart from linking remarks and common
methods, the reader is encouraged to focus selectively on topics of personal preference.
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Models and Methods






The art of the model-building is the ez-
clusion of real but irrelevant parts of
the problem, and entails hazards for the
builder and the reader.

Philip W. Anderson

Chapter 1

Models of strongly correlated
electrons

In this chapter we introduce the details of the models relevant for this thesis. First we
discuss the Anderson impurity model, its basic behaviour and parameter ranges. The sym-
metries of the model are identified and it is shown how the attractive and repulsive model
are related by a mapping. Similarly, the Hubbard model, its parameters and behaviour in
limiting cases are introduced. We discuss symmetries, symmetry breaking terms and the

mapping from the attractive to the repulsive model.

1.1 The Anderson Impurity Model (AIM)

1.1.1 General features and model parameters

Historically the Anderson impurity model (AIM) was proposed in order to describe metals
with magnetic impurities in a simplified microscopic model. The Hamiltonian of the AIM
is given by (Anderson [1961))

Hppq = Z skcL’Jckp + Z edczl’gcdp + Z Vk(c};,gcd,a +h.c)+ UCIl,TCd,TCZl,lcd,l' (1.1)
k.o o k.o

The model describes an impurity (d-site) with energy €4 in a metallic bath with dispersion
€k. There is a hopping term from the bath to the impurity site whose amplitude is char-
acterised by the parameter V. This term leads to a hybridisation between the bath and
the impurity level. The last term is the on-site interaction with strength U. The spin label
o here and in the rest of this thesis assumes values ¢ = 41 and therefore the impurity
corresponds to an s-orbital. In many situations where an impurity in metal is modelled a
higher orbital degeneracy (d- or f-orbital) would be more realistic. In this work we will,
however, focus on the singly degenerate case. In the following we briefly establish some
simple features and terminology commonly used. Unless otherwise stated we will assume
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throughout the course of this work that the Fermi energy ey is at zero energy, ep = 0. For
eq = —U/2 and for a half filled conduction band the Hamiltonian ([CT)) is invariant under
the particle hole transformation

T T
Cho = e o Ly, (1.2)

Hence, this case is termed particle hole symmetric case or simply symmetric AIM. We will
also refer to it as half filled case in analogy to the corresponding lattice situation. Without
hybridisation, Vi — 0, the model can be trivially solved (atomic limit) and the ground-
state energy Fjy only depends on the impurity electronic occupation ng. For ng = 0 we
have Ey = 0, for single occupation, ng = 1, Ey = €4, and the doubly occupied impurity has
energy Fy = 2e4+ U. We can see that for the symmetric AIM zero and double occupation
are degenerate and if ¢4 < 0 the lowest energy is given by the singly occupied state. For
U > 0 therefore the ground state is singly occupied. This argument can be extended in a
simplified picture to the case with finite hybridisation, Vi # 0. The delta-function atomic
limit peak is then broadened by the hybridisation with the conduction band.

In the non-interacting case, U = 0, the model can be solved with the Green’s functions
technique as already done in the original work by IA.n.d.e.tst (I]_Q_GJI) From the equations of
motion we find the Fourier transform of the retarded impurity Green’s function at T' = 0,

o0

Galw) = ((eqichoho = =i [dte 000 {ea(®)ch, (0))). (13)
The explicit expression for U = 0 is
0 1
Galw) = (1.4)

Cwt—gg— K(w)’

where w™ = w +in, n — 0. K(w) is generally referred to as the hybridisation function.

With the Dirac identity
1

r +in

:Pé Fimd(x) (1.5)

the hybridisation term in the denominator becomes

_ Vel _ N1 ) = Alw) i
K(w)—;m—P;w_gk mzk:]\/k]zd(w er) = A(w) —iA(w). (1.6)

In the AIM it is common to assume a flat conduction band density of states (p. = 1/2D)

and a broad band (e, € (—D, D), where D is the largest parameter in the problem). Then

w—D
w+D

and can be neglected or absorbed in a renormalisation of ¢4 [for a discussion see

for the usual range of w the real part of the expression A(w) ~ A(0)In( ) is small

, chapter 1)]. Approximating the hybridisation by the value at the Fermi level,
Vie ™ Vie =V, A(w) = mpe(0)V? = 7V2/2D = A independent of w, which will be used
throughout this thesis, when the local model is considered. In the DMFT framework we
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have to consider an effective impurity model and the hybridisation function K (w) retains
its frequency dependence. Here for the impurity model, however, we find the simplified

expression for (L))
1
el S 1.7
) = (1.7
which is what is commonly used as the free retarded Green’s function for the AIM. The
corresponding spectral function p)(w) = —ImGY(w)/m is a Lorentz curve centred at e4

with half width at half maximum (HWHM) A,

A/m

P (1.8)

0
pa(w) =
It is therefore clear to see that the hybridisation broadens the local level ¢4 in the spectral
density. From the atomic limit analysis we have another level at energy €4 + U, which is
also found to be broadened by the hybridisation. Based on these considerations we can
distinguish the following

Parameter regimes:

1. The local moment regime, where ¢4 < e and |ep — (¢4 + U)| > A, constitutes a
singly occupied impurity with a spin (local moment) coupling to the conduction bath.
In this regime charge fluctuations on the impurity site are largely suppressed, and

a transformation by Schrieffer and Wolff (I]_9_6_d) to the Kondo model is applicable.

The interaction term then has the form

Hiy = Z ke, k! [S+CL7TCk/7l + S_CLJ,Ckl’T + SZ(CLTC,C/J — C;fc,lck/,l)]‘ (1.9)
ke, K/

S is the impurity spin, S¢ = CIl Jagi),cd o (a: Cartesian component), St = 81+452.

This is the regime, where Kondo physics is dominant at low temperature and the
spectral density shows a narrow peak at the Fermi level.

2. The intermediate valence regime where, |eq — ep| >~ A =~ |ep — (¢4 + U)| and thus the
two levels lie within the width of A. Real charge fluctuations of electrons hopping
on and off the impurity are important in this regime.

3. The non-magnetic regime, e4—ep > A, where it costs energy to occupy the impurity.
This is the case, for instance, in the symmetric model with attractive interaction,
U < 0. The system is in this regime also for |eg —ep| > A, |ep — (ea + U)| > A,
such that the impurity is either always doubly occupied or empty.

If we restrict ourselves to the symmetric model, e, = —U/2, a mean field analysis shows
that only the ratio U/mA is relevant for the characterisation of the behaviour
). One finds an instability towards a magnetic solution for U/mrA > 1. Although this



12 Models of strongly correlated electrons

is an artefact and restored by fluctuations it is common to distinguish the regimes by this
ratio, i.e. a weak coupling regime for U/mA < 1, an intermediate coupling regime, U/TA ~
1, and strong coupling regime, U/mrA > 1. For large enough U, in practice U/7A > 2,
the last case corresponds to the first regime mentioned above. An important quantity for
this regime is the Kondo temperature Tk, which can be defined for the symmetric model

as (Horvatic and Zlatid [1985)
Tk = /(UA)2)e mU/8A+mA/2U (1.10)

It is the energy scale where the perturbation theory ofm (@) diverges, and it is
the only relevant low energy scale. The ratio of the spin susceptibility of the impurity ys

and the linear T coefficient of the specific heat ~4, which is referred to as Sommerfeld or
Wilson ratio,

R = 4d7mxs/3(918)*Va, (1.11)

describes the transition from weak coupling to Kondo behaviour; ug = 2‘;’2@ is the Bohr

magneton. One has R = 1 for noninteracting electrons (weak coupling limit) and R = 2

in the strong coupling case.
The low energy behaviour of the AIM can be expressed in terms of the renormalised
quasiparticles of a local Fermi liquid, which is described by a renormalised version of the

same model )
FIAnd = Z 5kc;rc,ack‘,o + Z éClc-crl,acd,a + Z Vk(c;rc,o-cd,a + hC)
k.o o k,o
+U : ctTi,Tcd,TCIl,lcd,l o (112)

where the colon brackets indicate that the expression within them must be normal-ordered.
This Hamiltonian corresponds to the low energy fixed point of the Wilson numerical renor-
malisation group transformation of the discretised Anderson and Kondo models, with the

leading irrelevant terms (hM]lSQ_IJ I].9_7j'i, IKﬂsh.n.a.—_m.LLLth;L&t_aJJ Il9.8.(l£l, [Hewson I].9.9.3€l) The

advantage of describing the fixed point in this way, as a renormalised Anderson model

rather than as a strong coupling fixed point of the Kondo model, even in the strong corre-
lation or Kondo limit, is that it clearly brings out the 1-1 correspondence of the low-lying
single particle excitations with those of the non-interacting model (I]im&s.o.n_&t_a.].] |2.0.O_4‘,
I]:[ﬂ&sm:l I].9.9.3A, |2_0_O_Ei) Furthermore, it is applicable in all parameter regimes, from weak
to strong coupling and for all occupation values for the local site. The effective level, &4,
the effective resonance width A = 77172/2D, and effective local interaction, U, define the

quasiparticles of this renormalised model. A more rigorous definition of these renormalised

parameters in terms of the self-energy and vertex function is given in chapter 2. The free
quasiparticle density of states is given by replacing the bare parameters in (LX) by the
renormalised parameters , R

AJm

~0 _
A = = (1.13)
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For particle hole symmetry ;4 = 0, and the corresponding Lorentz peak p9(w) describes
the Kondo quasiparticle resonance at the Fermi level.

The spin susceptibility Xs = Ximp/(gup)? can be related to the renormalised parameters

19934)

~—

pa(o
2

and since the specific heat coefficient in Fermi liquid theory is given by

Xs = [1 +[~]p~?l(0)]a (1'14)

272 _
Y = —5-Pa(0); (1.15)
we can express the Wilson ratio ([LII]) as
R=1+Up50). (1.16)

Since the only one energy scale in the Kondo regime is T, it possible to relate the renor-
malised parameters to the Kondo temperature, and one finds 7A = U = 4Tk.

Symmetries and symmetry breaking

The total spin operator of the system S = ), Sk + Sy commutes with the Hamiltonian
(CI) and due to this SU(2) symmetry the total spin is a conserved quantum number of
the AIM. This is not the case anymore if we couple the electrons to a magnetic field Heyt
at the d-site. Conveniently, we choose the field along the z-axis, Hext = H,e, such that
the coupling term is of the form Hy ,, = —paH. = h(ng; —na,), where h := % with
the electronic g-factor. Such a term implies that a positive magnetic field decreases the
energy of a down spin electron and thus favours an antiparallel alignment of the electrons
along the field axis, as it is usually the case in nature. Theoretically, it is, however slightly
more convenient to have a magnetisation and field with the same sign and therefore it is

common to choose

Hyag = —h(nay —ng,) = —h»_onag, (1.17)

a convention we will comply with throughout this thesis. In the wide band conduction
limit we can neglect any magnetic field acting on the band electrons. Any polarisation
only affects the impurity via the hybridisation A and any change to the conduction band

density due to an applied field is only at the band edges (£D) and therefore negligible in
the wide band limit ( |20_0_E]) The AIM in magnetic field is subject of chapter
3 and 4.

The Hamiltonian of the AIM (1)) is also invariant under a U(1) gauge transformation
and therefore conserves the total particle number N = Zk,o Nk, + ng or charge. This
symmetry is broken if the electron bath is in a superconducting state rather than a metallic
state. This situation will be subject of the study in chapter 5.
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1.1.2 The Spin-Isospin Transformation

We can map the symmetric AIM (U > 0) with magnetic field to an attractive AIM without
magnetic field by employing a “spin-charge’-transformation, or spin-isospin transformation
TEI Denote the unoccupied impurity site |U) =| |}) by isospin Ty, = —%, and in analogy
the doubly occupied site (T, = %) by | T1) =| ). T maps a spin state to an isospin state,
ie.

[ 1) 5] 1) and] 1) 5] ). (1.18)
In order to write this formally for the Anderson model it is convenient to use Hubbard

operators, Xgp :=|a){|. The impurity site operator thus can be written as
chp =Xy + X and e = Xy — Xy (1.19)
The spin-charge transformation has the effect
Teh T =Xy + Xpy = chy but Teh T71 = Xy = Xpg = ¢y

and vice versa.
The symmetric AIM local magnetic field H in positive z-direction is given by (LTI) with

eq = —U/2 plus (CIZ). We find that ngy = X1 + Xq.q is invariant under T, Tng T~ =

Nng,1- However, ng,| = lel+Xﬂ7ﬂ transforms to l—nd,l, where 1 = XT,T+Xl,l+XTT,TT+XU,U

was used. Thus, we see that the spin operator S ,,

1

2(nd7T +ng,| — 1) =: Td,za (1.20)

1 T
Siz = 5(nay —nay) =

transforms to the isospin operator Td,z with the property Td,z| 1) = %| 1, Td,z| ) = —%| ).
The interaction term transforms as nginq,| = Xy 4 EN X+t,1. Omitting the conduction
band and the hybridisation term one finds

T(HAnd + Hmag)T_l = —QhXﬁ’ﬂ — (5d + h)(XTyT + Xlal) +eq+h (1.21)

by particle-hole symmetry and using the expression for the unit operator 1. This can be
compared with parameters €/, U’ for an Anderson model without magnetic field , neglecting

an additional constant,
Hjpa = (255 + U') Xpg + ea(Xp + X)) (1.22)

The comparison of ([CZI) with (C22) shows that it is possible to transform the symmetric
Anderson model with local repulsion (U > 0) and with a local magnetic field to an asym-
metric Anderson model with negative U’ = —U and the identification for the asymmetric
parameters with the magnetic field is

/

h:—(sg+%>. (1.23)

!This is equivalent to a particle hole transformation for the down spin particles.
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Ul

Clearly, the symmetric case (e, = —%-) corresponds to zero magnetic field. For &/, < |%‘

h is negative. The appropriate transformation for the band electrons is
-1 -1
TCL,TT = CL’T, and TCLLT =C_p|

if E_k = —¢k and V_k, = V,:

The dynamic response functions in the charge and spin channel map onto each other
under the spin-isospin transformation 7. The diagonal and transverse spin (xs and x;)
and charge susceptibilities (y. and x.) are given by the following equations

Xs(w) = ((ng1 —ndgindr — nd1))w, (1.24)
Xelw) = {((na1+ng — Linay +nay — 1)), (1.25)
Xe(w) = ((chieayich car))os (1.26)
Xew) = (el sea car)e. (1.27)

One finds easily that

Xs(@) S xe(w) and  xi(w) S xhw). (1.28)

1.2 The Hubbard Model

1.2.1 General features and model parameters

Probably the simplest lattice model to study strong correlation physics including micro-
scopic charge and spin degrees of freedom, is the model suggested and discussed bym

(Ilf).ﬁd, IJ.Q.GAAJH), [Kanamori (IlE).Gd), and |Gutzwillel (IlQ.Gd) The Hamiltonian - referred to

as the Hubbard model - in the grand-canonical formalism reads

H:—Z(tz]Cjac]J—ic ZnZJ+UanTnll’ (129)

Z7J7U

where the first term describes hopping of electrons from a lattice site ¢ to j with amplitude
tij = 1/Ns> 4 eik(Rer)Ek; N is the number of lattice sites. Hopping is often restricted
to neighbouring sites and the amplitude is taken to be the same for all sites ¢. u is the
chemical potential, whose value is determined by the filling factor . The third term in H
constitutes the on-site electron-electron interaction of strength U. The model we consider
here is for a band of s-orbitals such that each site is maximally occupied by two electrons.
Extension to higher degeneracies are not considered in this thesis, but are certainly of
interest for the description of real materials. If a certain hopping amplitude ¢ is given the
band dispersion energy can be calculated, and for instance, for nearest neighbour hopping

on a cubic lattice with lattice constant ¢ we have in d dimensions

= —tZe_Zk Ri-R;) _ —2thos (kqa) (1.30)
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For large U and half filling (x = 1) every lattice space is likely to be occupied by
only one electron. Starting from such a configuration one can calculate corrections in a
perturbation theory in the hopping term and one obtains the so called t-J-model, where a

Heisenberg spin coupling term,

= %Zsi-sj, (1.31)

with J = 4¢2 /U, is generated. This is analogous to the mapping of the AIM to the Kondo
model for strong coupling. For the ¢-J-model away from half filling the hopping term
with amplitude ¢ [cf. eq. (LZJ)] has to be considered, but double occupancy is always
forbidden. Since J is positive an anti-ferromagnetic ordering is expected in the parameter
regime where the doping is not too large.

In the atomic limit, e = %y (zero bandwidth) or ¢;; = d;;t0, the equations of motion
for the retarded Green’s function can be solved exactly, which yields for p =0

G (w )—5ij<1_<n_“> 4 —_{n=0) > (1.32)

wt—ty  wt—(to+U)

This gives two delta-peaks at tg and tg + U similar as in the atomic limit for the ATM.
These excitations are broadened for finite band width and then are referred to as lower
and upper Hubbard peaks.

The Hubbard Hamiltonian ([C2Z9) has a number of symmetries. It is invariant under a
global gauge transformation,

c}ﬁ — ew‘c;U, (1.33)
and correspondingly the electron number is conserved. (L2 is also invariant under rota-
tions in spin space U(X) = e*9 (SU(2) symmetry), where S =, S;, and therefore the
total spin is a conserved quantity. Similar as the AIM the Hubbard model for half filling,
a bipartite lattice and p = U/2 is invariant under a particle-hole transformation

Cio & —c;r’g. (1.34)

Other symmetries for specific lattice structures exist, but we will not consider any of these
in detail.

1.2.2 The Spin-Isospin transformation and symmetry breaking

Similar as in the AIM described in section there is a canonical transformation which
maps the attractive model with arbitrary chemical potential to a half-filled repulsive model
with a magnetic field. The details of this transformation are given in the appendix of the re-
view article by INlea.s_at_al] (Il9_9_d) Starting point is the attractive Hubbard Hamiltonian

in the form

H_ :_Z(tljczacja+hc ana Uzannll z(])’u( )aU(l))’ (135)

23]70-
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where U() = —U < 0. Note that the chemical potential (') = p here can take arbitrary
values, such that a certain filling is achieved. This model is not magnetically ordered since
electrons tend to form local pairs due to the attraction term (m ). As a consequence
one has

7

DS =0, Y mR(sy) =0, (1.36)

o =+, —, z,1.e. no ferromagnetic order and no commensurate anti-ferromagnetic order. qg

such that e’®®: changes sign from one sublattice to another. The perfect nesting condition

e = 1/Nj Zij tijeik(&_Rf) = —El+qo 1S satisfied. The canonical transformation
c;.r’l = oo Rip, | CZT = bZT, (1.37)
i = e_lqORinT’l, cip = big, (1.38)

such that n;,; = n;T but n; =1 - n;l, maps H(tgjl-),u(l),U(l)) to H(tg),u(Q),U@)) +
Hyag(h) + C in terms of the b operators,

Hinag(h) = —h Z(”Q,T —ni). (1.39)

The parameters are related by t%) = tg-) = tij, U® = v =y >0, u® = U/2 and
h=—{U/2+ u). C = uNs and can be omitted as a constant. Spin quantities transform
into charge quantities and vice versa, as has been seen above in the AIM. Condition ([C30])
becomes 1/Ny . (n;) = 1, which corresponds to half filling.

We want to look at the relevant symmetry breaking terms in the charge and spin
channel. The symmetry breaking of interest for the repulsive model is an external field
coupling to the spin degrees of freedom and we introduce the general term

Hp =Y H;-S; =) HS/+HS+HS}. (1.40)
i i
We can introduce the two operators S;L = CITCH and S, = CIlCiT such that
1_ Lot - 2 gt - 3_ 1
S = §(Si +5;7), S; = —5(52‘ -5, S; = 5(”“ = n,|)- (1.41)

A special case for magnetic symmetry breaking is homogeneous magnetic symmetry break-
ing H! = H? =0 and H? = —2h, which corresponds to choosing a field along the z-axis.
The symmetry breaking term then just has the simple form ([LC39). Another symmetry
breaking is the antiferromagnetic symmetry breaking with the z-axis as preferred orienta-
tion. This requires a bipartite lattice structure with an A and B sublattice. The symmetry
breaking field has the form H}! = H? =0 and H? = —2h for i € A and H} = 2h for i € B.

For the attractive Hubbard model H_ the natural symmetry breaking term is a coupling

to the charge degrees of freedom. In analogy to the spin operators we can introduce an
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isospin operator reflecting the different charge degrees for freedom, T} = %Cja(“)Ci, where

Ccl = (C;[’T,Ci’l). We introduce similar as above TZ-+ = CI,TCZT,l’ T; =¢; c; 1 such that

(2
1 Lo e 2 + e 3 _ 1
T =50 +T0),  Ti=—5T7 =17), 17 =5 +niy). (1.42)

The symmetry breaking term for the attractive model has then the standard form

Sb_ZM T, = ZM T! + MPT? + MPT?. (1.43)

There are two types of symmetry breaking of particular interest in the attractive Hubbard
model. The first one is a charge density wave (CDW) state. For this we need to consider
a bipartite lattice and the order parameter corresponds to (17 — Z+1> # 0, where i € A
and i + 1 € B. Such a symmetry could be invoked by a symmetry breaking field of
the form MZ-1 = Mf = 0 and Mf’ = ¢gq for i € A and Mf = —gq for ¢ € B. Another
symmetry breaking of interest is superconducting order which can be induced by choosing

= ReA? and M? = ImA?Y, and M? = 0. This is an offdiagonal symmetry breaking
and has the explicit form

Hy. =Y (ReAd, —ilmA)T;" + (ReAl, +iImAL) T, =Y (A el l + Al ¢
% %

We saw above that the attractive and the repulsive model with field are related by a
canonical transformation as given in ([C38). Let us investigate how the symmetry breaking
term transforms under this transformation. We find T;r — S;Leiqom and T, — S;e_iqom
and thus apart from additional constants

1. . L A
T} — SRy gremiaof, T — _%S;requRi —Syer ol TP 5P (1.44)

(2

which explicitly shows that apart from phase factors spin is transformed into isospin and

vice versa. We can write

I = S0 RS (]SS

Since the symmetry breaking term in the spin channel (C40) can be written as

H} =Y H}S}+H;S; +HS}, (1.45)
%

where H+ H1 ZHZQ and H; = H1 + 2H2, we can relate symmetry breaking fields by
M7 = H? and H;L = (M} —iM?)e iR, and H; = (M}!+iM?)e "0Ri_ Tt is therefore easy
to see that the diagonal antiferromagnetic ordering in the repulsive model corresponds to
charge density wave ordering in the attractive model, and the superconducting symmetry
breaking (offdiagonal in the charge channel) in the attractive case corresponds to transverse
ordering in the spin channel for the repulsive case. More details concerning different types

of ordering can be found in the review article by Micnas et all (Il9.9.d)




Most of the unsolved problems of
physics and theoretical chemistry
are of the kind the renormalization
group is intended to solve (other
problems usually do not remain un-
solved for long).

Kenneth G. Wilson

Chapter 2

Methods for strong correlation
physics

In this chapter the methods relevant for this thesis are described. First we focus on the
renormalisation group methods directly applicable to the AIM. The most important aspects
of the numerical renormalisation group, including all the recent extensions to calculate
spectral functions, are outlined. Then we dedicate a large part of the chapter to the
detailed description of the renormalised perturbation theory approach and illustrate the
approach with a few examples of low order expansions. In the last section of the chapter
we give the main equations for the dynamical mean field theory, which links the solution

of an effective impurity model to that of a lattice model.

2.1 The Numerical Renormalisation Group (NRG)

The renormalisation group (RG) for statistical physics is an approach designed to under-
stand the behaviour of systems with many coupled degrees of freedom. Let the system
be characterised by a Hamiltonian H. Mathematically, the RG can then be defined as
a homomorphism R on the space of Hamiltonians Vg, R : Vg — Vg. It can be more
convenient to understand a Hamiltonian H € Vg in terms of its physical couplings g, such
that H = H(g) is a family of Hamiltonians for different g. Then the RG mapping acts
on the space of couplings V,, r : V, — V,. Usually, this mapping is invoked by decreas-
ing the energy scale, for instance the high energy cut-off, or coarse graining of space. In
practice, this can be done, for instance, by changing the fundamental length scale of the
problem by a parameter, b say, and integrating out the degrees of freedom within the old
and new fundamental scale. Usually, the RG involves a rescaling step in order to make
the Hamiltonian before and after the transformation comparable. We can characterise the
transformation by the parameter b, = 1, and a mathematical group law is realised for suc-

cessive application of the mapping via 7, (75, (g)) = rp,44,(g). Since in general an inverse
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of the transformation does not exist (the degrees of freedom which are integrated out are
not accessible anymore), the renormalisation group is mathematically a semi-group only.
A fixed point for the transformation in the coupling space g* is defined by r(g*) = g*, and
thus implies invariance of the Hamiltonian under the RG transformation. Physically, the
fixed point Hamiltonian can represent the essence of the low energy physics of the problem
Eolormad bond).

In many cases one aims to identify all the fixed points of a model, and to find out for
which initial couplings a certain fixed point in the coupling space is favoured and whether it
is stable. An interpretation of the RG is to see it as a scaling approach, where a fixed point
is reached, when the cut-off energy drops below the lowest energy scale in the problem, such
that no further changes occur and the Hamiltonian remains invariant. Before a fixed point
is reached a crossover from one effective model description to a different one can occur.
This happens, when the energy cut-off becomes smaller than a characteristic energy scale
for the model. Therefore, a particular class of high energy excitations can only occur
through virtual processes and therefore the Hamiltonian description alters. An example
is the passage from the AIM to the Kondo model, where in the latter case real charge
fluctuations are eliminated.

In this thesis we deal with a renormalisation group approach in the numerical form,
NRG, which was explored and applied to the Kondo model by (@) and later also
to the AIM (IK.I"_l.sh.n.a.;mJ.Lr_th;Lﬂt_al] h_Q_&OAJﬂ) It contributed substantially to a complete
picture of the Kondo Problem [see [Hewson (I]_Q_Q_BA)] One progresses iteratively to lower
energy scales whilst observing the behaviour of the energy spectrum of the Hamiltonian.

One can regard the RG here as method to split the full problem with (too) many degrees
of freedom into smaller problems on a certain energy scale, which can be solved. By
comparing the solution of these “sub-problems” the behaviour of the original “full system”
can be analysed. The details of the application to the AIM are given in the following

section.

2.1.1 NRG setup for the Anderson impurity model

The numerical renormalisation group (NRG) for the Kondo and Anderson impurity model
has been the subject of a large number of publications and has for instance recently been
reviewed byIBJ.L]la._at_a.].] (IZ.O_Oj) We will therefore keep our explanations here to a minimum

and refer the reader for more details to references (I]im&s.oﬂllQ.Q.&A, [Bulla_et all |2.0.0_ﬂ, Bauei
M) and the original papers (IK.U.sh.u.a._mm.th&t_al] h.Q.&OAJH)

The starting point is the Hamiltonian of the AIM ([LT]) with a constant density of states
in the conduction band. For the NRG approach it is mapped to a discrete form, the so

called linear chain Hamiltonian,

2
1 U
RS0 R ) SRR
o o



2.1 The Numerical Renormalisation Group (NRG) 21

\/ Z ancda+hC Z Y1 (f} g frt1,0 + Do), (2.1)

o,n=0

which is also depicted in figure 21

NN N %

-1 0 1 2 N-1 N

Figure 2.1: Linear chain model which corresponds to Hamiltonian (EI).

This Hamiltonian has been scaled by half the bandwidth D. As we can see the impurity
part (first line) of the Hamiltonian (EZT]) is the same as in the original continuum model
(CI). The conduction band and hybridisation term (second line) have taken a different
form and are written in terms of an f,, ;-operator basis. It is important that in this basis
only the states corresponding to fo, couple directly to the impurity term. We will briefly
sketch the steps of the transformation to get from (ICT) to ETI).

The major goal of the transformation is to clearly separate how states of different energy
scales in the electron band couple to the impurity degrees of freedom. A first step is to
exploit the spherical symmetry of the problem and to expand the band electron operators
into spherical harmonics, where only the s-wave states are important since they couple to
the impurity. The next step is a logarithmic discretisation of the band into intervals I,, =
(A=(*+D A=") with length I, = A="—A~*D characterised by the parameter A > 1. Note
that A — 1 corresponds to the continuum model and ,,;1/l, = A~! gives the ratio by which
the interval length decreases. The idea of the logarithmic discretisation is that the energies
are clearly separated in different orders of magnitude (energy scale separation). In each
interval the operators are expanded in a Fourier series. An approximation in the approach
is to neglect higher p-states in the Fourier expansion and focus on the lowest component.

This turns out be a good approximation for A ~ 2 as analysed by IKﬂsh.n.a.—_m.l.LLth;Lat_al]

). Crucial for the setup of an iterative procedure is a basis change. The starting

point is a spatially localised state at the impurity, which is a superposition of states from
all intervals I,,. It is created by fOJf,U on the “Oth site” of a linear chain and is the only
state that couples directly to the impurity. The rest of the basis states are generated in a
hopping (tridiagonal) Hamiltonian form with offdiagonal elements 7, as seen in equation
).

From the Hamiltonian (Z1]) we can easily find the recurrence relation

HYH = HYg + 7N+1(f1Tvng+1,a +h.c.) (2.2)

and thus (1) can be used to generate an iterative diagonalisation scheme, when it is
considered for steps N =0,..., Npax. The numerical RG transformation is defined by

R(Hy) = Hy+1 := VAHN + Eni1(flo, fys1,0 + hc.). (2.3)
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The definition of the linear chain parameters vy and &y is (Hewson [19933),

L1+ ATH)ACD2(1 - A D+AT)(1—A)

Y = (1 — A=—2n—1)1/2(] — A—2nH1)1/2 §n = 21 AT IR A (2.4)

The ~,, the property of falling off with n, which implies that one couples to lower energetic
contributions at later NRG steps. This is very important for the NRG approach, since
the high energy physics should not be altered anymore, when we descend to lower energies
along the chain. Note that a scaling factor v/A is included in the transformation. It
is chosen such that the hopping at step N is of order one and allows one to compare
excitations from different NRG steps. This is illustrated in figure

E A

N N+1 N+1

Figure 2.2: Discrete energies from the diagonalisation: Descending to lower energies and

rescaling in order compare with earlier steps.

In the iterative diagonalisation procedure we start by considering the decoupled impu-
rity problem, which can easily be solved. After this one considers the two site Hamiltonian
Hg;nd involving the impurity and the “0-site”, and solves this numerically. Then for each
successive step N, the basis is always enlarged by an additional site on the linear chain
and the Hamiltonian diagonalised. Since the Hilbert space increases exponentially the cor-
responding matrices become too large to be handled numerically for a certain iteration.
At this point a truncation sets in, where states corresponding to energies higher than a
certain cutoff are neglected. This is motivated by the RG idea that higher energies are
integrated out and do not contribute any more to the low energy physics. The eigenstates
can be characterised in terms of conserved quantum numbers. As mentioned in chapter 1
for the Hamiltonian ([I]), the total charge and total spin are symmetries and give good
quantum numbers Qn and Spy. For the linear chain model the charge and spin operators
have the form (measured relative to number of sites),

N
On =Y Fofno+chycio—N—2 (2.5)
o,n=0
and
N
Sv= Y Sns+Sa (2.6)

o,n=0
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(Quantum number (S%) = Sy(Sy + 1)). Details about the extension of the basis at each
NRG step can be found in (hﬁnshna;mlmhm_a.l]hﬂm, appendix).
In this series of transformations (Z3]) the lowest excitations from the ground-state can

be followed when the energy scale after each step is rescaled as described above. By fitting
effective models to the converged low energy spectra different fixed points characterising the
behaviour of the model can be identified. It is possible that for intermediate energy scales
a crossover from one fixed point to another can be observed, depending on the parameters
initially chosen for the RG flow. It is not straightforward to give an RG transformation for
the coupling constants in the ATM. As described byIHmMs.Q.n_et_al] (IZO_OA‘) one can, however,
identify renormalised parameters as introduced in section [Tl for all NRG steps, which

characterise the behaviour of the model. How this is achieved is illustrated in appendix
In section on the renormalised perturbation theory we will describe the approach
based on these renormalised parameters.

The major subject of this thesis is the study of situations with broken symmetry.
Various modifications occur to this standard setup when the NRG is applied to situations
with symmetry breaking and in the DMFT framework. We will point out later what the

main differences are.

2.1.2 Static and dynamic quantities from NRG calculations

There are a number of extensions to the original scheme described above, which allow one
to calculate static and dynamic quantities, such as the occupation number, the one-particle

Green’s function and spin and charge susceptibilities (IS.a.kaJ_&t_a.].]h.Q.&d IQQSL.I.E'.‘E.&].”].Q.QJ)

In this section we will briefly explain the methods relevant for this thesis.

Static expectation values like the single occupancy (ng.) and the double occupancy
(ng,1nq,;) can be calculated from matrix elements and the ground state energies only. For

a scalar operator O the expectation value is given by

(0) = %tr[e’ﬁH(’)] - %Ze*fﬂfrn (m|O|m), (2.7)

in terms of an eigenbasis {{m)} of H. The energy eigenvalues E,, are calculated at each NRG
step by diagonalising the Hamiltonian. We also need to evaluate the matrix elements, which
can be done easily for the isolated impurity and then at each iteration by transforming
them with the corresponding orthogonal matrices for the basis change. For details we refer
to m M)

One can also calculate the retarded impurity Green’s function

Gao(t) = —ib(t){{cao(t), ch,(0)}) = —if(t)tr(p{cac (t),cl, (0)}): (2.8)

Inserting an eigenbasis of the Hamiltonian and writing out the Heisenberg operators

Cdo(t) = ethcd,Je*th, we find with the standard expression p = e ## /Z and after Fourier
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transformation, Gy, (w) = [ dt eG4, (t) that the spectral density pg,(w) = —ImGy (w)
can be displayed in the Lehman representation as a sum of delta functions

palw) = 5 3 mlchin) 26 — (B — Bu)l(e0Pn + ¢, (29)

The real part of G4,(w) can be obtained via principal value integration. The matrix el-
ements (m|czla|n> are defined for the isolated impurity system and are then calculated at

each NRG step with the help of the corresponding basis transformation (IK.I"_l.sh.n.a.;mJ.Lr_th;Lﬂt_al]

). The NRG calculations in this thesis are carried out at zero temperature. In prac-

tice, it is usually sufficient to use a value for the temperature 1/ which is smaller than all
the other energies appearing in the calculation. In order to obtain a continuous spectrum
we have to broaden the excitation peaks in () numerically,

plw) = Zwifb(w,i), (2.10)
i
where w; is the weight,

1 _ _
Wigmm) = 7 |{m|Oaln)[*(e™Fm 4 775), (2.11)

for a certain excitation energy FEj(,, ny = Em — Epn . As described by tB.u.lla._at_a.]J (Il9.9.d) a
suitable broadening function f; is an exponential on a logarithmic scale,

o~ o~ (log |w|—log E;)? /b
b|E;| VT

Results obtained for this thesis make use of this broadening function unless otherwise

fb(w’ Z) =

(2.12)

stated. (ZI2)) has the advantage of broadening the spectral data according to the infor-
mation available, i.e. the few peaks for higher energies are broadened out more than the
ones on lower energies, where a lot of information is available. In the interpretation of the
spectra one only has to bear in mind that the broadening function displays some asym-
metry. In practice in this simple scheme, we have to use matrix elements and excitations
from different NRG iterations and merge this information to obtain a spectral density on
all energy scales. The idea behind this is that the most accurate information for a typical

energy w is given by the iteration N where w ~ A=(N=1/2,

Reduced density matrix scheme

The method to obtain spectra described in the last section works well in many cases
(I]im&s.o.dll%ﬁzl, tBJJJla._e.t_a.].”ZO_OlI) It is, however, important to note that the first few NRG

iterations, which describe the high energy features are not accurate enough to capture

a small symmetry breaking, for instance induced by a magnetic field. Therefore, the
dynamical quantities at high energies are not necessarily calculated with the correct ground
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state, and, for instance, the magnetisation obtained from a sum over the spectral weight
does not give correct values when compared with exact results (I]io.fs.t.etl’..erl |20.0.d) Only
for later steps, for lower energy scales, the symmetry breaking is calculated correctly and,

therefore, the right ground-state obtained. As pointed out by Hofstetter (IZ0.0.d) in an
improved calculation of spectra one really has to start with the ground-state obtained in

the last iteration. It is possible to do this by storing the information from all the NRG steps
and calculating the spectra “backwards” from the ground state at the last NRG iteration.
The correct implementation rests on the concept of the reduced density matrix p*d, where
we think at step m of the sites n > m as environment. This is illustrated in figure Such

a procedure makes use of the full information obtained in the iterative diagonalisation.

| O OO ~

-1 0 m i om+1 N-1 N

Figure 2.3: Linear chain model, where iterations n > m are treated as environment for
step m.

This concept of the reduced density matrix can be used to calculate a more accurate
impurity Green’s function (). Since the density matrix is only diagonal at the last step
of the NRG we obtain a different expression for the Lehmann sum (),

Pd.o(w) = Z mndlw — (Em — Ey)], (2.13)
m,n
with
G = (el )" (3 (mlel 1) Ulpln) + (mlel,In) > (mlpli)lch ,In)).  (2.14)
! !
Details of the implementation are described in reference Im M) This approach has
still an unsatisfactory aspect as we have to mix information from different iterations to

patch together the spectral function on all energy scales. A more rigorous scheme also
involving the concept of a reduced density matrix is explained in the following section.

Full density matrix (FDM) approach

A different approach to spectral functions within the NRG framework is based on the
complete basis set of the full linear chain of length N which has been identified by

|Anders and Schiller (IZQ_O.EJ) The idea is to consider the linear chain model (figure EZ3)

at step m < N as the full chain with all the hopping elements for connecting sites i > m

set to zero rather than thinking of the chain being extended by one site at each NRG step.
A typical Fock basis state for this set of “environment” sites is denoted by

lem) = |Tmst) @ ... @|IN), (2.15)
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where usually J,, = 1...4, numbering the basis state at site m, from empty to double
occupation. With this a basis state at iteration m, denoted by |r),, can be extended to a
basis state for the full chain of length N as a product state

rem)N = r)m ®len) =|r,e;m), (2.16)

where the last expression corresponds to the notation used by |Anders and Schiller (IZ.0.0.d)

Due to the truncation of the Hilbert space and discarding of states during the NRG proce-

dure it is not straight forward to see how one can construct a complete basis set. We will
use the notation, which labels kept states |r)kx with |k) and discarded states |r)q with |I).

We denote the iteration at which the truncation first sets in by mg. Then the set of all
states

{’kae;m0>}7{’l765 m0>}7 (2-17)

i.e. the set of all kept states equipped with the rest of the chain environment together with
the set of all discarded states plus environment, form a basis for the full Wilson chain.
Going one step further to mp + 1 a moment’s thought shows that

{k,e;mo+ 1)}, {l,e;mo + 1)} (2.18)

is only a subset of a complete basis for the chain, since we have discarded the states
{ll,e;mq)} at the step before. If, however, we collect the states

{k,e;mo+ 1)}, {ll,e;mo + 1)}, {|l, e;m0) }, (2.19)

we obtain again a complete basis for the full chain. This can be extended to the last
iteration N and if we think of all states for this last step as discarded (just for notational
convenience), then we can define the Anders-Schiller (AS) basis as the set of all discarded

states equipped with environment,

{’lae; m>}m:m0,...,N- (220)

This is a complete basis for the full NRG chain.

By definition of the AS basis we know that for the Hamiltonian at stage m, HY, 4,
|k,e;m) and |l,e;m) are exact eigenstates, H}: Ja,e;m) = ES|a,e;m) for o = I, k. In
order to calculate spectral functions one makes the fundamental approximation to assume
that they are also eigenstates of the Hamiltonian for the full chain H = Hﬁ‘ﬁ’x. This
amounts to saying that the effect of further environment sites, which due to the NRG

setup couple with decreasing energies, is only a small perturbation, and therefore
Hla,e;m) ~ EX|a, e;m). (2.21)

In this sense the AS basis is an approximate eigenbasis for the linear chain model. This fact

can be used to evaluate spectral functions (I]Zetm_&t_a.l]hﬂ.ﬂ.d, Weichselbaum _and von Delft
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2006). As we trace out the environment states this approach involves the reduced density
matrix pd introduced before. Since we are using a complete basis set one can easily
see, that for chains of any length, sum rules are satisfied exactly. The details for the

manipulations for a general spectral function of the form,
Gas(t) = —i0()(plA(), B].) (2.22)

(¢ = —1 bosonic, € = 1 fermionic), are given in appendix [Al

Self-energy with higher F-Green’s function

Once the impurity Green’s function has been calculated according to the procedure de-
scribed above it is possible to extract the impurity self-energy from the Dyson equation

Sao(w) = G, (w) ™" = Gao(w) ™. (2.23)

It turns out, however, that a better method to calculate the self-energy is to employ a
higher Green’s function (Bulla_et all[1998), since the difference in ([Z23)) can lead to large
numerical errors for small w. The relevant expressions can be found in an equations of

motion approach, where one finds the relation
(w—e4— K(w))Ggo(w) —UFy(w) =1, (2.24)
with the higher F-Green’s function,
Fy (@) = (CaCh—oCa o3 Cg e (2.25)

and K (w) was given in ([CH). Identifying the self-energy as

Fy(2)
Yo(w) = , 2.26
@) =V (2.26)
yields in equation (ZZ4)) the standard expression for the Green’s function
1
Gy(w) = (2.27)

w—¢eqg— Kw) —X5(w)’

Hence, ¥,(w) can be calculated from equation (ZZ0]) once G,(w) and F,(z) have been
determined.

2.2 The Renormalised Perturbation Theory (RPT)

In section [LJ] we have heuristically introduced renormalised parameters for the AIM and
shown that static response quantities can conveniently be expressed in terms of them. Quite
generally in strongly correlated systems, physical couplings can change their effective value
substantially, when one descends from the band energy to typical low energy scales. A
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prominent example of such a behaviour is Anderson’s poor man’s scaling MM),
where the antiferromagnetic spin-spin coupling J is seen to increase when the energy is
lowered. In fact, since the ideas of Landau’s Fermi liquid theory it is well known that the
low energy physics of interacting particles can be described in terms of effective parameters

which differ from their original value (IAbnstmLet_aJJ I].9.6.§i) As a prominent example

consider heavy fermion systems, where the effective mass of charge carriers can vary up

to a factor of 500 from their bare mass. In models of strongly interacting electrons the
original parameters are usually of the order of the band width. In locally correlated systems,
however, the behaviour is generally dominated by a low energy scale, for instance the Kondo
temperature Tk. If we are interested in the properties of the order Tk it is very convenient
to choose the corresponding effective low energy parameters as a starting point for the
description of the behaviour.

For a perturbative approach it is important to choose an expansion point with an
appropriate energy scale such that other effects enter as corrections. Therefore, it is a good
strategy in systems where the renormalisation effects are large to work with renormalised
couplings on the low energy scale rather than the bare parameters. Such an approach, a
renormalised perturbation theory, can be constructed, and for the AIM it has the property
that the lowest order results are asymptotically exact (I]im&s.o.dll&%ﬂ, IZD.OJI) One has to be
careful, however, since by using effective parameters renormalisation effects are implicitly

taken into account and must not be included again. Similar as in the high energy field
theoretic approaches (m M) counter-terms, which are introduced there to cancel
divergences, have to be introduced in order to satisfy renormalisation conditions

m In the following sections we explain the details for the formalism of the RPT
based on these Fermi liquid parameters for the AIM in a magnetic field.

2.2.1 The RPT setup

For the setup of the RPT it is convenient to work in the functional integral formalism.
The Anderson impurity model from equation ([ICT)) is expressed as

B
_ — [drL (1)
ZAIM - /D(daada)p(ck,aaak,a)e 0 A ) (228)
with
_ 0
['AIM = chz,a(T)(a_ +5k Ck:a +Zd a_ +5d0)d (T) +

> V(o (T)do (1) + hoc.) + Ung 1 (T)na (7) = Lani(Ea,er A, U), (2.29)

where we have allowed for a magnetic field h, 4, = €4 —0oh and A = 7V?2/2D in the wide
conduction band limit as explained in the first chapter. cg,(7) and d,(7) are Grassman
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fields here. Rescaling the band electron fields cg , — cg,»/Vi and integrating them out the
total action becomes

B B
S =— Z/dT /dT/ do(1)Go (T — 7)Yy (7)) + U/dT na,1(7)ng, () = So + Sy, (2.30)
70 0 0

where
1

1 —iTWn
Golr) = E ; ¢ Wy, — €40 + iAsgn(wy,) .

(2.31)

The full d-site retarded Green’s function (analytically continued to the real axis w € R),
which takes through the self-energy ¥, (w, h) all interaction effects into account, reads

1
w—Edo+iA —Xs(w,h)

Gio(w) = (2.32)

The action (230) is a common starting point for perturbation theory in the bare interaction
U, by which an approximation for ¥,(w, h) can be calculated.

As explored by IH.FAMSQ_IJ (I]_9.9.31:], |2.0.0J]) the Fermi liquid properties of the AIM, can be
expressed in terms of renormalised parameters, which are obtained by expanding the self-
energy at w = 0. This approach rests on basic properties of the self-energy, —ImY, (w) ~ w?
(ﬁ@ ), which essentially define the Fermi liquid regime. With the usual definition
of the wavefunction renormalisation

zo(R) ™t i=1— %Rezg(w =0,h), (2.33)

the renormalised parameters are defined by

Ap(h) = 2o(W)A,  Eqo(h) = zo(h)[ea0 + ReSq(0, h)]. (2.34)

The remainder of the expansion of the self-energy XI°™(w,h) defines the renormalised
self-energy X, (w, h),
So(w,h) = 25 (h)Z2™ (w, h). (2.35)

With these parameters we can write the impurity Green’s function (232) equivalently as

. 2o (h)
Cao(w) = w—E45(h) +iAy(h) — Se(w, h) (2.36)

A renormalised interaction U(h) is defined by the full, antisymmetrised, renormalised four
point vertex function at zero frequency,

U(h) = T1,,(0,05h) = 2 (k)2 (R)T',, (0, 05 h). (2.37)

This quantity is usually interpreted as the interaction between quasiparticles in Fermi

liquid theory (IA.bﬂst.mu.t_aJJ h.&ﬁj).
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In analogy to the renormalised perturbation theory in quantum field theory (Ryder
1996, chapter 9), where the theory is written as Lg = L + L. (Lp bare Lagrangian, L.
counter-terms) we can define a renormalised perturbation theory by identifying

Lav(€do, A U) = Lan(Eaor A, U) + LA, A, As), (2.38)

where the counter-term Lagrangian reads
LI (A1, Ao, Ag) = Zdr AQ— — A)dy (1) + Asng 4 (T)n | (7). (2.39)

Note that in the renormalised theory we are working with renormalised fields dl (1) =
do(1)/\/Zo in Lo (Eas A, U) and L, (A1, A2, A3). The parameters ); have to be determined
by the renormalisation conditions for the renormalised self-energy

- - 0%,(0,h)
¥,(0,h) =0, N =0 (2.40)

and for the full renormalised vertex at zero frequency
T1.1(0,h) = U(h). (2.41)

These have to be satisfied to all orders in perturbation theory such that renormalisation
effects are not over-counted. The parameter A\; also carries a spin label for the symmetric
model with magnetic field and Ay becomes spin-dependent in the asymmetric model with
magnetic field. We have omitted such a notation for simplicity. In order to set up such
an RPT it is useful to introduce source terms and define generating functionals as done in

the following section.

2.2.2 Functional integral description in the 1PI formalism

The generating functional for the renormalised theory is given by
/D (d, Yo" ) =eldy ) =5, L ). (2.42)
The renormalised parameter action S” can be obtained from Lam (€40, A, U) by integrat-

ing out the band electrons as in the last section,

[

8 B
Z/dT /dT/ - é o(T— T/)ildg(T/) + 0/(17’ nQ’T(T)TLQ’l(T) (2.43)
0 0

where

- 1 . 1
GU(r)==) e imwn _ 2.44
o(7) B Zn: iwn, — €40 + 1Axsg0(wWp) ( )
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The action for the counter-terms can be written as

B B B
§==2. / dr / dr' dy(1)GEO(r — 7)1y (') + A3 /dT gy (Tng (7),  (245)
0 0 0
where . )
Go(r) = 5D e T 2.46
o (T) ﬁ ; e )\inn n )\1 ( )

The one-particle irreducible (1PI) source term is defined as

B
Sy = Z/dT [Todi () + d,, (1), (7)) (2.47)

70

As usual we can introduce a generating functional for connected Green’s functions,
W"[J] =log Z"[J], (2.48)

and the renormalised one-particle Green’s function can be calculated as

L ewr
Cao(lwn) = = oS T o) . (2.49)

Standard Setup of the renormalised perturbation theory

The standard way to generate a renormalised perturbation expansion from (ZZ2) is to

write

Z'J] = /D(dz’ag)esg[df.,d;}SB[dT,,d;}SS[dQ,d;}SKB[dZ,d;]SJ[dZ7d;] (2.50)

_ 6—56[5107570}—58[5_70,570]—5/?3[6_70,570]/D(d(rj’g;)eSg[dg,d;}SJ[dg,d;] (2.51)

o~ S5l093, 1581 3,15, 00793, 7 . (252)
where by Gaussian integration

8 B _ N
- Zaofdf Ode/ Jo (T)GO (T—7")Jo (")

ZiJ] =e (2.53)

In this setup all the counter-terms e =0 and e s are treated directly as interaction terms
and this is how the counter-terms are usually introduced in quantum field theory (Ryder
1996, chapter 9). They give rise to three additional Feynman rules for the diagrams:

1. A contraction multiplied by A;, which we will denote by (o) in the diagrams.

2. A contraction with the additional factor Agiw, or Agw for T' = 0 after Fourier trans-

formation, which we will denote by (OJ) in the diagrams.
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3. An interaction term with constant A3, which has exactly the same structure as the
standard AIM interaction term and can be denoted by an interaction vertex with
side-script As.

The easiest way to analyse (Z0Z) is by expanding the exponential in Zj[J] in terms
of free propagators, as given in (ZZ4]), first and then act with the functional derivatives
from the interaction terms in Sy[dy,,d7 ], SGlés,,d7,] and S§,[0,,,07 ] as a contraction
to vertices. In order to calculate the one-particle Green’s function one needs to leave two
external source terms open for the last functional derivatives, as seen from (£Z9), and
for the two-particle Green’s function (and full vertex) one needs four. Graphically, this is
usually written out with lines (—) for the propagators G and crosses (x) for the source
terms J. The functional derivative d;, ;) then just takes the cross away and relates it to
time 7. It is convenient to calculate diagrams after Fourier transformation. Rather than
the Green’s functions we focus on the self-energy and vertex function.

An inductive proof that such a renormalised perturbation theory can be carried out
order by order is given in appendix[Cl We need to prove that the renormalisation conditions
&20) and 41 can always be satisfied. For this it is helpful to classify the contributions
to the proper self-energy into three different types:

e (a) terms X (iwy,) coming purely from AIM interaction term e 50, They correspond
to the diagrams in the standard perturbation theory of the ATM.

e (b) terms coming purely from e~ which correspond to trivial counter-terms which
can be collected to a self-energy contribution X (iw,) = —[A\1 + Agiwy).

_qQr c _Qc
e (c) mixed terms E&nllx/\Q A, (iwn) generated by the combination e 0, e=%, and e s,

The perturbative renormalised self-energy to order n is given by
S0 (iwy,) = Z [ZZ km) (twy,) + Z Tlli\gk/\? an)] + 2% (iwy,), (2.54)

where (™) denotes the mth diagrammatic contribution to the self-energy of order k. We
have omitted the spin index for notational simplicity. In order to classify different orders
of the Eerturbation theory it is useful to think of the counter-term parameters as expanded

inU M),
A= AR, (2.55)
k
Then for each order of the perturbation theory we have to determine the coefficients )\Z(")
in this expansion, such that ZZ0) and ZZ1)) are satisfied, whilst all mixed terms for the
renormalised self-energy are included.

In order to illustrate how the RPT works we will briefly discuss the expansion to
second order for the symmetric AIM with zero magnetic field at 7" = 0. The first and
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Ug 5(7

h

>

o v I - T
Figure 2.4: First and second order diagrams for the renormalised self-energy.

second order standard diagrams are displayed in figure 24 To first order we have to
consider the diagram in figure 241 (left) which gives

0
E(U})U =U / dw [-ImG° _(w)]/7 = Un_,. (2.56)

The full vertex to first order is trivial and the second renormalisation condition (EZZT])
yields )\él) = 0. ¥¢(w), shown in figure (left), is determined from (ZA6) and the first
renormalisation condition (Z40) gives )\gl) =n_, and )\51) = 0.

Up to second order the only dynamic diagram contributing is the one in figure 224
(right), which we denote by 2(62113
similar to the one in 24 (left), which gives 2(62:3) = U%n% . We also get a contribution to

(w). A static term arises from the double tadpole diagram

Y™IX (¢), which comes from mixing the first order counter-term contribution and the first

order diagram,

) ~2)\(1) s ~ ~
siei@) — L [dw 69,0 =025 (0. 1) (2.57)

It is shown in figure (middle). Another diagram, which could appear in principle is the
tadpole diagram with A3 interaction Ef,mx’@’m = )\éz)ffgﬁ,a.

A
o — 04 —0 — 0y —0
N U

/\Qw

g g g

Figure 2.5: Examples of counter-term diagrams.

In order to determine the coefficient in the expansion for A3 we have to determine
the antisymmetric up-down full vertex at zero frequency. To second order there are two
contributions which are shown in figure [Z8l For zero field and particle hole symmetry they
give the same contribution with opposite sign and therefore we find )\:(f) = 0. From this

we find that the parameters to second order have to be given by )\52) = (72?’&2,(, + E?ix’@’l)

Y
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w,o W', —0o w,o W' —0o

fffffffffffffffffff ]

w,o W', —o w,o W' —0o

Figure 2.6: Second order diagrams for the vertex function.

where we used Eg’:)(O) =0, and )\g) = Eg’i) (0)/U?. This determines the renormalised
self-energy to second order with all contributions according to (Z54)). To clarify how the
second additional Feynman rule would be incorporated we give the simplest diagram for

this term in figure (right), which is actually of third order.

. ~3)\(2) T _
$mix(3,1) — —iiUQ 2 /dw WG (w)2. (2.58)
T

Whilst for this case it is straight forward to carry out the RPT one can imagine that
for higher order calculations with larger number of standard and mixed diagrams it be-
comes more and more cumbersome to compute all contributions to the RPT. Third order
calculations have been discussed by m ). It might be easier to alter the setup
of the RPT slightly in order not to deal with all the counter-terms separately and we will

discuss a possibility in the following section.

2.2.3 Alternative formulations and extensions
The perturbation theory can be given in a different formulation by including the “free
counter-terms” derived from S§ into the propagator, which then takes the form

1
w—§d7g+iAg+)\1 —i—)\zw.

Gornne (w) = (2.59)
Since the counter-term interaction term S5, has the same form as the standard interaction
term, also these terms can be collected and the perturbation theory carried out in Uy =
U + A3. The renormalisation conditions become self-consistency equations in that case.
Although such a setup at first sight appears promising due the much simpler structure
of the perturbation expansion it turns out that it is difficult to carry out the expansion
in this form. We had seen in the last section that the counter-term parameters include
contributions to different order in U [cf eq. ([Z3)]. The setup defined by (CCIH) and the free
propagator (ZhJ) implies that counter-term contributions to all orders are included even
in the low order diagrams discussed in the last section. In fact, if the exact expressions
of the counter-terms, which can be derived from the identity [E38]), were used in this
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approach the theory would formally lead back to the bare perturbation theory and nothing
new would have been achieved. More details for this kind of approach are described in the
appendix [T

The idea of expanding in an effective renormalised interaction U; turns out to be
fruitful, when we consider an RPT expansion, which sums up a certain class of diagrams
to all orders rather than all diagrams up to certain order in U. This is best illustrated for
the dynamic transverse spin susceptibility y;(w) as defined in equation (CZ6), which we
can calculated by an RPA-like sum of repeated quasiparticle scattering diagrams
M) This is depicted in figure EZ70

g o

Figure 2.7: Typical diagrams for repeated quasiparticle scattering for the susceptibility
(left), the renormalised self-energy (middle) and the full vertex (right).

The lines correspond to the free quasiparticle propagators in equation (ZZ4]) and the inter-
action term vertex is given by Uy = (71?50. Here the series in terms of repeated quasiparticle

scattering yields the expression

ho
17, (w)

1
21— (j;?ganggo(w)’

Xt(w) = (2.60)
with the appropriate effective interaction UI’}L’U. We have introduced the pair propagator
"7 (w), which is given by
ho dwy ~o 40

Hpﬂ,(w) = — %Ga(w +w1)GZ , (w1). (2.61)
It can be solved analytically and the expression is given in section BZ2lin the next chapter.
Note that IT27 (0) = p3(0). We still have to satisfy the renormalisation conditions (EZAT)
and (7)), but as we have not calculated the self-energy or vertex this seems difficult. How
can we therefore determine the quantity (j}?fa? As illustrated by M) we can

use the exact static result for the susceptibility from the first chapter (LI4]) to determine
this quantity by equating the result for w — 0 in (Z&0) to (CI4). Hence, we find

uhe, = LNO (2.62)
14+ Upy(0)

It turns out that the dynamic susceptibility can be described quite accurately in such a
formulation on all energy scales m m)
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For the renormalised self-energy one can make a similar approximation and sum up the

repeated scattering terms as shown in figure 27

dWQ ~

S5 W) = O0F [ S22 (00)C, (w0 — wa). (263)

The processes of spin fluctuations taken into account in such a summation are likely to be
the most dominant ones in the Kondo regime. The effective interaction U; has to be found
from the renormalisation condition [{ZZI) for the full vertex, which for this simple RPA
like approximation is just a sum of the terms as shown in figure EZ1 From this we find

~ U

1= :H-Tﬁ?l(@) (2.64)

which agrees with the earlier result for the susceptibility. In order to calculate the renor-
malised self-energy f)a(w) we still have to include the counter-terms and in the most
straightforward approach is to only take the trivial counter-terms ¥(w) into account
and determine A\; and A9 by the condition (Z40). Results for this kind of calculations will
be presented in chapter 3.

An extension of this simple repeated scattering analysis can be given by considering a
self-consistent theory with fully dressed propagators. This is most conveniently described
in the two-particle irreducible (2PI) framework and an approach based on a Luttinger
Ward functional. We have described the details for such an approach in appendix [C3

2.3 The Dynamical Mean Field Theory (DMFT)

So far in this chapter we have concentrated on the description of methods suitable for
the solution of impurity models like the AIM. Another subject of this thesis is, however,
to study strong correlation effects in lattice models like the Hubbard model. As realized

by Metzner and Vollhard! (1989), and elaborated on by Miiller-Hartmann (1989), it is

enlightening for the understanding of correlation effects in lattice models to study the limit

of infinite dimensions, d — oco. With the appropriate scaling of the hopping amplitude, it
was found that the self-energy becomes a local quantity, i.e. does not depend on k anymore,
but retains the full frequency dependence. The limit thus generates a large simplification
without making the problem trivial. Based on these considerations an approach linking
the solution for a lattice model to that of a local model was developed, the dynamical mean
field theory (DMFT). The essential idea of the DMFT is to map the lattice model to a
single site quantum impurity model embedded in an effective medium (IG_eoLgﬁs_et_a.]Jh_Q_Q_d),
which is determined self-consistently [also Local Impurity Self-consistent Approximation
(LISA)]. In contrast to standard mean-field or Hartree Fock theory, DMFT fully takes into
account local quantum fluctuations and hence the many-body character of the problem
is retained. One can show that DMFT is exact in the limit d — oco. For details of the

derivation of the main equations we refer to the review article by IGﬂ)Igﬁs_at_aJJ (I]_9_9_d)
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To be more specific, we consider the Hubbard model ([LZ9)) which is written conveniently
in the imaginary time path integral formulation as

Z= H/D(Ci,a’Ei,o)e_S[Ci’G(T)7Ci’G(T)] (2-65)
with the action

B
_ _ 0
Slevo (0210 (0) = [ dr 3 (1G5~ ty = e (7)+U S na(r)ma(). (260
0

The DMFT approach is based on deriving an effective action for a special lattice site,
usually termed the “0”-site. This is achieved by formally integrating out the degrees of
freedom of the other lattice sites. The effective action on the “0”-site reads

B B B
Seft = —/dT/dT' ZCO L (TG (1 — e (') + U/dTZnO’T(T)an(T), (2.67)
0o 0 7 0 i
where we have not explicitly allowed for any kind of symmetry breaking. We have intro-
duced the effective Weiss field (or dynamical mean field) G, ' (7) for the “0™site. In analogy
to classical mean field theory it has to be determined self-consistently, but in contrast to
the latter G, '(7) is function of 7, which mimics the lattice dynamics. For a given Gy (1),
Sef in (ZZ67)) determines the dynamics at the 0-site, which is still an interacting problem. In
the DMF'T approach the lattice self-energy is entirely local and the lattice Green’s function

can be written in the form

1
Gt (iwy) = : 2.68
ke (iwn) iwpy + p— e — 28t (1wy,) (2.68)
From this we can define the local lattice Green’s function G'°(iw,,) by
G (i) = = > GE(iw,) = / d pol) — HT 2,69
’Lu)n Z an 51/0_)” + M e — Elat(l‘u]n) [po] (C)’ ( )

where ¢ := iw, + p — X% (iw,). HT[po](w) is the Hilbert transform of the free electron
density of states po(e) =D, 0(e — €k),

po(§)
(—¢&

In the derivation of the DMFT equations [see (Georges et all (1996)] one finds quite gen-

HT[0](¢) = / a¢ (2.70)

erally the Dyson-like relation between the effective Weiss field, the local lattice Green’s
function and the self-energy,

1

E—— T loc Gy )71, .
HT (0] (0) Y (Gwy,) + G (iwy,) (2.71)

go_l(iwn) = Elat(iwn) +
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In the DMFT framework the lattice self-energy ¥!# (iw,,) is the same as the self-energy
of the effective impurity problem ¥™P(iw,); also the Green’s function of the effective
impurity model and G'°°(iw,) coincide. As an effective impurity problem (Z67) we can
consider the AIM in the path integral formalism (Z29) with the effective action

B B B
S=- go/d'r O/dTI EO’(T)GO(T — T/)ildo'(’r/) + Uo/d’l' ndvT(T)ndvl(T) (2.72)

where generally
1

1 —iTwn
Golr) =73 Zn:  ion = ea— K(iwy) (2.73)

with K (iw,) given in the earlier equation ([LH).
By comparison of ([Z72) with [ZB7) one can formally identify Gy (7 — 7') = Go(r —
7/)~L. Therefore, the properties of the medium have to be encoded in the generally complex

and iw,-dependent hybridisation function K (iwy,) (often denoted as complex A(iwy,)). For
this reason it cannot be identified with just an imaginary constant ¢{A, as for the impurity
model with a flat conduction band density of states. In this framework we find therefore
an explicit expression for the Weiss effective field

Gy H(iwn) = iwn + p — K (iwy), (2.74)

where one identifies e, = —p. This relates the DMFT approach (Z67) to an effective AIM
as the corresponding impurity model to be studied.

In practice, we use a certain input for the medium, K© (iw,), to calculate the self-
energy of the corresponding effective impurity problem X™P(iw,,) with the NRG approach.
This self-energy is identified with the local lattice self-energy %1t (iw,, ) and used to calculate
the local lattice Green’s function with (Z8d). From equation (ZZI) we can then calculate
the new effective Weiss field Gy ! (iw,) and K™ (iw,) from Z4). This closes the self-
consistency cycle, which has to be iterated until convergence, K™ (iw,) = KD (iw,),
is reached. This approach is completely general and does not rely on a specific density of
states po(e). For the Bethe lattice with a semicircular density of states,

1
po(e) = 52V 4t2 — g2 le] < 2t, (2.75)

analytic expressions for the Hilbert transforms can be given and the equations simplify
I]_9_9_d) In this thesis we employ the NRG as solver for the effective impu-
rity problem, and therefore have to map a given hybridisation function K (iw,) onto the

corresponding linear chain problem [cf. equation (ZJ)]. A procedure to do this has been
devised by Bulla_et all (I].9.9_ﬂ), and is also described by @b
For situations with broken symmetry some of the expressions have to be modified, but the

) for different cases.

general setup is as described here.
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Try to learn something about every-
thing and everything about some-
thing.

Thomas H. Huxley

Chapter 3

Field dependent quasiparticle
dynamics in the Anderson impurity

model

In the following three chapters, which form the the second part of the thesis, we present
results for locally strongly correlated electrons in the Anderson impurity model (AIM). As a
common theme of this thesis we are interested in the situation with broken symmetry. The
AIM does not order spontaneously in any parameter range, it is, however, interesting to
study its response to an external symmetry breaking. In this chapter we study the effect of
a magnetic field. The analysis is a combination of analytical and numerical methods based
on the NRG and RPT framework. First we describe the behaviour of the field dependent
renormalised parameters and show how the low energy response can be characterised in
terms of them. In later sections we present dynamic response function for higher energies
deduced from NRG and RPT calculations.

3.1 Strongly correlated electrons in a field

Electrons in strongly correlated systems are particularly sensitive to the application of
magnetic fields. One reason is that strong correlations are usually a consequence of the
interaction of electrons with enhanced spin fluctuations, and these fluctuations couple
strongly to a magnetic field. Another reason is that there is a low temperature scale
T* (T* < Ty) induced which plays the role of an effective Fermi temperature Tp. The
effects of a magnetic field H in general depend on the ratio of the two energy scales ugpH
and kpTF. In a weakly correlated metal upH/kpTF < 1, but in a strongly correlated
system the relevant ratio is pupH/kpT™, which can be of order unity. This sensitivity
means that a magnetic field is an important tool in the experimental investigation of
strongly correlated metallic systems, such as magnetic impurities, quantum dots, heavy
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fermions and transition metal oxides. In the next section we show how it is possible to
describe the quasiparticles in a magnetic field in the Fermi liquid regime by field dependent
parameters. We focus on the particle-hole symmetric Anderson model in the next sections

as in reference Hewson, Bauer and Kolle (|2_0_0_d) The non-symmetric case is studied in a

similar approach in IB_aJ_mr_a.n_d_H_mMs_oﬂ (IZ_O_O_Z;J) The AIM (CT)) with the local magnetic
field term ([LI7) forms basis for the calculations. For the symmetric AIM, the calculations
can be carried out either directly with the field dependent model or we can use the mapping

to the negative U model, which is not symmetric for finite field, as explained in section
T2 For the NRG calculation the latter has the advantage of preserving all spin and
charge quantum numbers as a symmetry and thus reducing the numerical effort.

First we discuss the field dependent behaviour of the renormalised parameters intro-
duced earlier. Once the renormalised parameters are known, the impurity spin and charge
susceptibility, the specific heat coefficient and the induced impurity magnetisation at 7' =0
for arbitrary magnetic field can be expressed by substituting into the relevant exact formu-
lae derived from a renormalised perturbation theory. The leading temperature dependent
corrections to the susceptibility, magnetisation, the finite conductivity due to scattering
from an impurity in a metallic host, and for the conductance through a quantum dot will
also be calculated in a later section. It is interesting to see how the response coefficients
behave when the field strength is increased. A number of physical properties are found
to change qualitatively in the strongly correlated case for magnetic field strengths in the
range 0 < gupH < Tk, where Tk is the Kondo temperature. This should be a physically
accessible magnetic field range for many systems. The T2 coefficient of the magnetic sus-
ceptibility, the conductivity from a magnetic impurity in the strong correlation regime,
and the conductance through a quantum dot all change sign in this magnetic field range.

We also describe these systems beyond the low energy regime with the NRG and
RPT method in section B4l The approach developed here is a general one and is equally

applicable to other impurity models |2.0.O_4‘) and to lattice models as will be
seen in chapter 6. For lattice models, for which dynamical mean field theory is applicable,
similar NRG methods to those employed here can be used. It is important to bear in
mind that the approach is not restricted to the NRG method, the relevant renormalised
parameters could also be estimated using other theoretical techniques, variational methods
for example.

3.2 Field dependent renormalised parameters

For the characterisation of the low energy fixpoints of the AIM we had introduced renor-
malised parameters &5, A and U in section [ In section EEZI] we defined them more
rigorously in terms of the self-energy including an explicit dependence on the magnetic
field h. As first demonstrated by I]im&so.n_e.t_all (IZ.(lOé‘) the field dependent parameters can
be deduced from the low energy excitations in an NRG calculation. The details of how this
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is achieved are given in appendix In this section we want to discuss the behaviour of
these parameters, as the magnetic field h is varied, focusing on the particle-hole symmetric
case. Before discussing the field dependence of the parameters let us give the generalisation
of some of the equations from the first chapter to the case with magnetic field. The low
energy scale T is defined by 47* = 7A(0) in the following, such that in the Kondo regime

T* = Tx. The Friedel sum rule (IEU_&d_&i Il9.5.d Il@.n.gr.&tﬂ I]_9_6_d is applicable to each spin

component, and in terms of the renormalised parameters (Z34]) it reads

1oL (Fae)
Ndoc = B 7Tt ( A(h) ) . (3.1)

For particle hole symmetry we can write £;,(h) = —0ég(h). Thus from (EIl), we can
deduce the induced impurity magnetisation M (h) = m(h)/gup at T = 0,

m(h) = %(nd,T —ng,|) = %tan_l (Zﬂléz))) . (3.2)

It is therefore specified by the two parameters £4(h) and A(h) that characterise the non-
interacting quasiparticles. The free quasiparticle density of states ([CI3)) generalises to

A
(w—0é4(h))? + A2(h)

ﬁ?l,a(wa h) = (3.3)
As ﬁg »(0,h) is independent of the spin state we can drop the spin index o for w = 0. The
field dependent spin susceptibility at 7' = 0 from equation (CId) becomes

1

xs(h) = 5a(0, WL + U (h)a(0, b)), (34)

whilst the charge susceptibilities reads

Xelh) = 530, WL~ T, ). (3.5)

The corresponding transverse spin susceptibility x:(h) [zero applied field limit in the trans-
verse direction, cf. equation ([CZH)] is given by

(3.6)

For the symmetric model £4(h) is entirely magnetic field driven it is convenient to write it
as £q(h) = 7(h)h. Then 2h7n(h) is the Zeeman splitting of the impurity levels for the non-
interacting quasiparticles, and 7(h) can be given the interpretation of a field dependent
enhancement factor.

Equation (B3 for the susceptibility y,(h) has a term in U(h). However, the suscep-

tibility xs(h) = arg,(lh) can also be derived by differentiating the expression (F2)) for the

magnetisation which depends explicitly only on the variables £4(h) and A(h). Hence, the
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value of U (h) is not independent of the other two parameters and we can derive a relation

between them, )
1+ U(h)3%(0,h) = 655}(1}1) - Z((Z; 8?2}‘). (3.7)

The proof that equation (B4 for the susceptibility is exact depends on a Ward identity,
so the relation ([B7]) we have derived must be an alternative statement of this identity. In
terms of 77(h) = £4(h)/h it becomes

on(h) _ hi(h) OA(h)

1+ U(h)p4(0,h) = ij(h) + h oh A b (3.8)

In the system with magnetic field the expression of the Wilson ratio ([LIH) in terms of the

renormalised parameters reads
R(h) =1+ U(h)p5(0, h). (3.9)

In figure Bl we give a plot of the renormalised parameters as a function of the natural
logarithm of the magnetic field, log(h/T™), for the strong coupling case U/mA = 4.

T ‘ ‘ ‘ ‘ ‘ 10° —— ‘
—— (h) —— fi(h) e

6L —— A(h) /A —— A(h) /B e T
-«-Uh)/U -*-U(h)/U ,‘

5+ R(h) 10% | R(h) <

al

3 10"

2

Ir 10°

0y . -4 -2 0 2 4 6
log(h/T)) log(h/T")

Figure 3.1: Left: The magnetic field dependence of the renormalised parameters A(h)/A,
g4(h)/éq (= 7(h)) and U(h)/U, and the Wilson ratio R(h), for the symmetric Ander-
son model with U/mA = 4.0 plotted on a logarithmic scale. Right: The magnetic field
dependence of the renormalised parameters A(h)/A, 7(h) and U(h)/U, and the Wilson
ratio R(h) for the same parameters plotted on a logarithmic scale and with logarithmically
scaled y-axis. In both cases the energy scale is set by T* = 7A(0)/4 = Tk.

We give two different versions of this dependence, one scaled by the bare parameters
(left), and one scaled by the renormalised parameters at zero field (right), which has a
logarithmically scaled y-axis. We can follow the progressive decrease of renormalisation
effects on the quasiparticles as the strong correlation effects are suppressed when magnetic
field is increased. This can be seen directly from the ratio A(h)/A = z(h), which after a
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range with little variation increases steadily to one for large fields. For zero field in the
Kondo regime z has a small value, but with increasing field the impurity spin is more and
more polarised, leading to a suppression of the spin fluctuations and likewise the Kondo
effect. The quasiparticles are therefore “de-renormalised” from the h = 0 values by the
magnetic field, and for very large field h > U essentially non-interacting behaviour (z = 1)
is found. The trend can also be seen in the field dependent Wilson ratio R(h) in B3). It
is a combination of all the renormalised parameters and shows a smooth transition from

= 2 for h = 0 to R = 1 for large ﬁeld It is known from Bethe ansatz calculations

(tEssL&hk_a.n.dJM.egma.nﬂ 1983) that R(h) = 2 is independent of % in the Kondo model.

This can be seen to be the case in the results for R(h) shown in figure Bl when the

parameters correspond to the localised or Kondo regime. The localised model, however,
is only valid when the charge fluctuations are completely suppressed. For very large field
values h > U local charge fluctuations can be induced by the magnetic field and, as this
regime is approached, R(h) makes a crossover to the value R = 1 for non-interacting
electrons.

In the limit A — 0, the field dependent enhancement factor for the magnetic response
of quasiparticles 7(h) is equal to 77(0) = R(0) due to (BX) and (BH). Therefore, in the
Kondo regime, R(0) = 2, the quasiparticles have twice the non-interacting value for field
dependent splitting showing the enhanced susceptibility towards exposure to a magnetic
field. For very large h, 7(h) goes to one corresponding to a normal Zeeman splitting for
non-interacting particles. In the intermediate field regime, h ~ T*, 7(h) becomes fairly
large before going down to one. Coming from large fields this can be understood from

mean field theory, where we can write
7™ = eq ()™ /h = [ea + U(na/2 + m(h)) + h]/h = 1+ Um(h)/h, (3.10)

where we have used particle hole symmetry. This term increases from one as h decreases as
the magnetisation does not decrease much in this regime [see figure B2 (left)]. Coming from
zero field the behaviour can be understood from the Friedel sum rule for the magnetisation

B2) which gives
A(h)

i(h) =

As can be seen for the behaviour of the magnetisation in figure B2 (left) in this regime

tan(mm(h)) (3.11)

there is a sharp rise accompanied by a moderate increase of A(h) which leads to the strong
increase in 7(h).

It is not so straight forward to understand the behaviour of the renormalised quasipar-
ticle interaction U(h). At first sight it might seem surprising that in the intermediate field
range U(h) is larger than the bare interaction of the model. This does not imply, however,
that the interaction effects are becoming stronger. The effects of the interaction on the low
energy scale depend upon the combination, 0(h)ﬁg(0, h), and p5(0, h) falls off rapidly with
h as £4(h) moves away from the Fermi level. The combination U (h)53(0,h) can be seen to
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Figure 3.2: Left: The impurity magnetisation m(h) for the symmetric model with U/7A =
3.0, together with R(h)/4, where R(h) is the Wilson ratio, plotted as a function of the
logarithm of the magnetic field, In(h/T™*). Also shown for comparison are the corresponding
Bethe ansatz results h:sx&hk_a.n.dﬂh.egma.nﬂ (I]_9_8.Ei) for the field induced magnetisation for
the Kondo model. Right: The ratio —p9(h)’/p%(0), where the prime indicates a derivative
with respect to h/T*, is shown for U/mA = 0.0,0.5,3.0 as a function of A/T*. The dashed
line shows the asymptotic result as h — 0, 3h7r\/§/2TI%, for the Kondo model.

decrease monotonically with increase of h, as discussed above for R(h). We can observe
the enhancement of the effective interaction U(h), as the magnetisation is reduced from
the saturated value mg,y = 1/2 for large field. As the applied magnetic field is reduced
from the regime h > U, spin fluctuations increase and enhance the effective interaction U,
as in the random phase approximation (RPA), above the bare value U,

TRPA U

U™ (h) = W. (3.12)
This result corresponds to the enhancement of the susceptibility that one finds from the
RPA. If the magnetic field is reduced from a large value then Up4(0,h) > 0 increases and
S0 0RPA(h) increases. This is precisely what is seen in the large h regime in the results
in figure Bl As the magnetic field is further reduced the many-body correlations are
increasingly effective in screening the impurity so that U(h) decreases from an enhanced
value greater than U to a value 47Tk as h — 0 when U > 27A. The increase as seen
when coming from the other side, i.e. from small magnetic fields, can be understood
as follows. The localised model gives R(h) = 2 for all h, which implies that U(h) =
1/75(0,h). From this result, and equations (@) and ([2), the ratio U(h)/7A(h) for the
localised model can be expressed entirely in terms of the magnetisation and is such that
U(h)/mA(R) = 1/cos*(mm(h)). For h = 0, this corresponds to the strong correlation
results U(0)/7A(0) = 1, as m(0) = 0, and for very large fields where m(h) — 1/2 as
h — o, it gives U(h)/mA(h) — oo, corresponding to the fact that charge fluctuations can
only be completely suppressed if U is infinite. For a more extensive discussion we refer the
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reader to the paper by |I:[m159.u.,_Ba.u.er_a.n.d_K.0.lled (IZD.O.d

The magnetisation in terms of the renormalised parameters (B2) can be compared with

exact results from Bethe ansatz calculations for the Kondo model
) as shown in figure B2 (left). It agrees with the the BA ansatz results over the field

range, where charge fluctuations are not so important (I]iﬁmsg.n,_B.aJ.Ler_a.n.d_KQﬂ.erl IZ0.0.d),

but starts to deviate for large h. Due to the charge fluctuations, the approach to saturation

is much more rapid for the Anderson model than for the Kondo model, once h exceeds U.

3.3 Low temperature response

With the help of the field dependent parameters we can express the low order tempera-
ture dependence for response quantities and study the behaviour of the coefficients with
magnetic field. We will consider the susceptibility and magnetisation first.

Magnetisation and Susceptibility

Using a thermodynamic identity one finds (I]iﬁmsg.n,_B.a.u.eLand_KQﬂﬂl |20.0.d)

2
Xo(To 1) = xs(0, ) — e () (%) , (3.13)

with 5 o0
L (nT*)= 0 ﬁd(O, h)
ex(h) === on2

On integrating these results with respect to h we can derive a similar relation for the

(3.14)

induced magnetisation,

(T, h) = m(0, ) — cm(h) <£>2 (3.15)

where

(= T*)? 97(0, )

6 oh
In figure B (right) we plot the results for —p(h)'/p3(0), which is proportional to ¢, (h),
for U/mA = 3.0,0.5,0.0 in the range 0 < h/T™* < 2.5. It can be seen that all three curves
have a maximum which implies that for a specific magnetic field hy,;, the coefficient ¢, (h)

em(h) = — (3.16)

is maximal and therefore the magnetisation decreases most significantly with increasing
temperature in this regime. For the strong coupling regime we see in figure B2 (right) that
hmp < 0.57* and that is the field region in figure B2 (left), where the magnetisation has
the steepest rise. Another consequence of the fact that all three curves have a maximum
is that ¢, (h) in (BI4) becomes zero, and changes from positive to negative sign in this
range. Hence, from this field hyp on the low temperature susceptibility increases with the
temperature. This occurs for h significantly smaller than 7% = Tk in the Kondo regime.
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Low Temperature Transport in an Arbitrary Magnetic Field

In order to determine the T2-dependence of linear response transport coefficients we need
to calculate the renormalised self-energy ¥, (w, T, k) both to order w? and to order T2, We
calculate this from the renormalised perturbation expansion as explained in section
taken to order 02(h). This takes full account of the quasiparticle scattering and gives
the exact result of Yamada (1975a) for h = 0. Note that no counter-terms have to be
considered for the 72 and w? coefficients. In order to deduce the w? term we consider the
second order diagram as given in figure Z4 with U — U(h),

%) dw1dws GO (w — w1)GO (w1 + w2) GO (wo), (3.17)

where the free causal Green’s function for the symmetric model with magnetic field for
T = 0 in terms of renormalised parameters has the form

[GO(w)] 7! = w4 g&4(h) + sgn(w)iA(h). (3.18)

The corrections to order w? can be deduced from the second derivative of the self-energy
with respect to w evaluated at w = 0 and T' = 0. Using

92GO(w) 8r2i

r 2G% (w)3 — 2mid (W)Y (w, h) — A(h) Po(w, h)?5(w)oéq(h) (3.19)
we find after some algebra

So(w,0,h) = —c(h)w? |i — (2 + dw(h))aéd(h)/A(h)] , (3.20)

where ~2 . , ~

_ mU(h)[pg(0, )] a () = AR

W T g enp 2

We have introduced £(h) = 754(0, h)éq(h) and I(h) is the integral
= [ / G + )P L (3.22)

which can conveniently be evaluated numerically.

The corresponding result for the renormalised self-energy to order T2 can be derived
using the Sommerfeld expansion. The calculation can be performed by using for each
internal propagator G%(w) in the T' = 0 diagrammatic expansion an additional correction
term (Hewsorl [19934, chapter 5),

(TP SwAm)
3 (-t oca(h))? + A2(h)

(3.23)
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The result for the renormalised self-energy to order 7?2 for w = 0 is
Yo (T,0,h) = —c(h)(nT)? [z +(1+ dT(h))aéd(h)/A(h)} : (3.24)
where the parameter ar(h) is given by
sy AM) L Eah) oy (Ea(h) A(h)
RTERTS [1 Zore (Zo) (4 G0 u(h))] B

We can now apply these results to the calculation of transport coefficients.

Application to magnetic impurities

The contribution to the conductivity o T,h; from the scattering of isolated impurities
described by an AIM is given by )

7R =) | o () (3.26)

where pg(w, T, h) = A(h)pg(w, T, h)/A, and pg(w, T, h) is the spectral density of the quasi-
particle Green function Gy(w, T, h) including the renormalised self-energy. The Sommerfeld

expansion gives for (B2Zf) to second order in 7' on using the renormalised self-energy to
calculate the quasiparticle spectral density pg(w, T, h) Iﬁé)

)

T \?
o(h,T) = o(h, o){l + oo (h) <m> + 0(T4)}, (3.27)
where o (h,0) = 200/cos?(rm(h)) and o3(h) is given by
oa(h) = ﬂ?)m(m [1+C(h)(R(h) —1)*] . (3.28)
The coefficient C/(h) reads
C(h) = 2cos?(mm(h)) — sin®(mm(h)) [1 — 3ar(h) + au(h)] . (3.29)

In figure (left) we show the second order coefficient o2(h) plotted over log(h/T™) for a
range of parameters (U/mA = 0.5 — 4).

For zero field the conductivity due to impurity scattering rises with temperature as is well
known m ). When h is increased, o2(h) decreases and tends to zero for very
high fields, so that the low temperature conductivity becomes temperature independent.
The impurity level is then shifted out of the range of the thermally excited states in the
conduction band so that there is negligible impurity scattering. We note for the strong
coupling cases, where there is a local moment (U/7A = 2,4), that the coefficient oo(h)

changes sign for a certain critical field h., with h. ~ 0.57*. The mathematical reason for

this behaviour is discussed in Iﬂmam_B_a.uﬂ_and_Kgﬂﬂl (IZ_O_O_d) Physically, when coming
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Figure 3.3: Left: Field dependent coefficient oo (h) from (B28]) for the second order temper-
ature expansion of the conductivity. Right: Field dependent coefficient G3(h) for the sec-

ond order temperature expansion of the conductance (B32). Weak coupling (U/7A = 0.5)
up to strong coupling (U/mA = 4) is considered.

from larger temperatures it is the spin flip scattering of the local moment that causes the
resistivity p(T)) = 1/0(T) to rise as the temperature is lowered, leading to a resistance
minimum and the Kondo effect. Perturbation theory shows that spin-flip scattering gives
a diverging amplitude for 7' ~ T*. The behaviour (characteristic for zero field) is then
starting from 7' = 0 a (quadratic) increase in the conductivity with rising temperature to
a maximum (around 7%) and from there on a decrease, when other processes like phonon
scattering are taken into account. Likewise the resistivity decreases quadratically from
T = 0 to the famous minimum and then increases again. The situation changes for a
strong field, since for a mainly polarised impurity spin spin-flip scattering processes are
strongly suppressed, and therefore a minimum in the resistivity p(7') = 1/0(T") might not
occur anymore. The change in sign of the temperature dependence for a certain magnetic
field for the behaviour starting from 7" = 0 might therefore be connected to the fact that
the resistivity in the strong field directly increases with temperature. As a consequence
we would not observe a Kondo minimum anymore. To our knowledge, this effect has not
been seen experimentally, but for magnetic impurities systems with a very low Kondo
temperature it might be feasible to put the result to an experimental test.

Application to quantum dots

In the limit of linear response the equilibrium value of the one-electron Green function
can be used to calculate the differential conductance G = dI/dV through a quantum dot

(Ferry and Goodnick 1997),

G(T, h) = % $ / dompay (w0, T, h) (—‘9”; (‘”)> , (3.30)

W
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where np is the Fermi function and Gy = e?/wh with Planck’s constant A. In the low

temperature regime we can again apply the Sommerfeld expansion to obtain the leading

order finite temperature corrections to order 72 (Iﬂﬂam_ﬁawnd_lﬁgﬂﬂl |2_0_0_d),

7T \? 9
G(T,h) = G(0,h) (1 — Ga(h) <m> > , G(0,h) = Gocos“(mm(h)), (3.31)

and

cos?(mm(h))
3

—sin®(mm(h))[3 + (R(h) — 1)*(1 + 2ay,(h) — 6aT(h))]}.

Ga(h) = {0082(7Tm(h)) [1+ 2(R(h) —1)7]

In figure (right) the field dependence of Ga(h) is shown. Note that we have included a
minus sign before the T2 term in (B331), so that the similar behaviour in figures and
(right) actually corresponds to opposite temperature dependence. This is due to the
approximate inverse relation between the two systems, if the hybridisation V = 0 for an
impurity, there is no scattering and hence infinite conductivity, whereas if V' = 0 for the
quantum dot there is no current and hence infinite resistivity.

The temperature dependence and its scaling with Tk for zero magnetic field has been

observed experimentally by Goldhaher-Gordon et all (I19.9ﬁ21) In finite field there is a sign

change in this leading temperature dependence at a values of the magnetic field 0 < h < T™.

A sign change in the second term in the Sommerfeld expansion of equation (B30) occurs

when pq changes from a local maximum to a minimum Vﬂgam_ﬁa;mand_K_cﬂlad |20_0_d)

Note that this effect, in contrast to the case discussed in the last section, is not unique to

the Kondo regime and can also occur for weak coupling. A qualitative explanation of this
sign change is that the local spectral density at the Fermi level is suppressed with increasing
magnetic field. At higher fields when the spectral density develops two peaks then there are
more thermally excited states which can contribute to an increase of the conductance. This
temperature dependence could be experimentally observable, since estimates of the Kondo
temperature are of the order 300mK corresponding to magnetic fields in the experimental
range (IK.oga.n_&t_a.].] |2.0_O_4‘) A difficulty might be that the overall response is reduced by
the cos?(mm(h)) factor in equation (B3

3.4 Beyond the Low Energy Regime

3.4.1 NRG method

We can use the extension of the NRG method to calculate the dynamic response func-
tions, as explained in section EEI2L to look at the behaviour of the model in an arbi-
trary magnetic field on higher energy scales. In doing so it is important to use one of
the density matrix extensions as the standard NRG approach gives results which consid-
erably underestimate the shift of the high energy spectral weight with the variation of
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magnetic field. We also use the approach, in which the self-energy is deduced from the
calculation of higher F-Green’s functions. It can be shown in detail that the magneti-
sation obtained from integrating the density matrix improved spectra up to the Fermi
energy agrees very well with results obtained from static NRG expectation values or the
expression using renormalised parameters ([B2) in the weak and strong coupling regime

(I];Lmam_B_almr_a.n_d_Kg_L]ﬂI |20_0_d) In figure B4 (left) we give results for the spin up part

of the d-site spectral density pg1(w) = —%ImGdJ(w*) for a strong coupling situation

(U/mA = 4) for various values of the magnetic field h.

Figure 3.4: Left: Strong coupling (U/mA = 4) spectral density of the d-site Green function
pd1(w) for various magnetic fields h. The energy scale is given by 4Tk = mA. Right:
Quasiparticle peak for the spectral density of the d-site Green function pg1(w). The energy
scale on the left side is set by half the bandwidth D = 1 and on the right w-axis is scaled
with Tk.

The shift of the spin-up Kondo resonance from the Fermi level with increase of magnetic
field, which is almost imperceptible on the plot on the left hand side, is accompanied by
large shifts of the spectral weight on the higher energy scales as the impurity is magnetically
polarised. In figure B4 (right), we focus on the effect of the magnetic field on the the
quasiparticle (Kondo) resonance. The shift of the resonance from the Fermi level (w = 0)
with increasing magnetic field values is clearly seen on this higher resolution energy scale
used for this plot. As the peak shifts, its height decreases and the resonance becomes
broader. For even larger fields than shown here the peak merges with the lower atomic
limit peak seen in figure B (left). Note that the peak form is asymmetric with logarithmic

tails, similar to the results OfIB_Qs.c.h_at_a.].] ), obtained using the perturbative RG for
the Kondo model for large magnetic fields. However, some of the asymmetry in the results
must be attributed to the logarithmic broadening scheme (IZ).

If —e,(h) denotes the position of the quasiparticle peak in the spectral density for a
spin up electron, then the corresponding value for non-interacting electrons (U = 0) is half
the Zeeman splitting, Az = 2h. An exact expression for €,(h)/h in the limit A~ — 0 has
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been derived by h@gan_a.n.d_[l].ckﬁu.sl (IZD.OJI),

ep(h) B R
h—0 h 1 + bAZ2’

(3.32)

where R is the Wilson ration and b is the curvature of the imaginary part of the self-energy
at w = 0. The value of b can be calculated from the renormalised perturbation expansion
) and the result (B32) written as

ep(h) B R
h=0 h  1+(R-1)%2/2

(3.33)

This ratio, therefore, varies from one in the non-interacting case (R = 1) to 4/3 in the
Kondo limit (R = 2). Note that this is a substantial reduction from the free quasiparticle
values 77(0) = 2. It is not straight forward to obtain a precise estimate of b or the value of
ep(h) from the NRG spectra as they are sensitive to parameters of the logarithmic scale
Gaussian broadening (ZI2]) which is used to obtain a continuous spectrum on all energy
scales from the discrete results. However, if the broadening is modified to Lorentzian peaks
with constant width for the very low energy scales the asymptotic results can be confirmed.
We have estimated the ratio €,(h)/h from the NRG spectra for higher magnetic field
values and find that it increases monotonically with h and exceeds the value of 2 before
the peak merges at high field values into the atomic limit peaks. There have been other esti-
mates of the h-dependence of this ratio (IMLQQL(L&.DdJM&dlZOﬂd, Ile.t.ﬂzﬂ.Od, hmgamnd.[h.ck&nfl
), but these differ markedly according to the method of calculation. On the basis of
a Bethe ansatz calculation of the spinon spectrum for the Kondo model, IMQQJT_a.n_d_Weﬂ
M) find that €,(h)/h < 2 in all cases and conjecture that the value of 2 is the high
field asymptotic limit. It is possible that this is a feature of the localised model, when

charge fluctuations are completely suppressed. There is some evidence in support of this
in our results in that, as we suppress the charge fluctuations on increasing the value of U
through the values U/mrA = 2, 3,4, the ratio €,(h)/h increases less rapidly with increase
of h. The ratio only begins to exceed the value of 2 roughly at the point when charge
fluctuations set in and R(h) begins to differ significantly from the value of R(h) for the
localised model, R(h) = 2. Iﬁ

model and finds a ratio close to but always less than 2. Using the local moment approxi-

mation I]_mgan_a.n_d_[lmk&n_sl (IZO_OJ]) have also estimated the ratio ¢,(h)/h and find an even

more marked increase in the ratio with increase of h to values such that ,(h)/h > 2.

) has also done NRG calculations for a localised

The scaling of the ratio €,(h)/h with the Kondo temperature has also quantitatively been
studied (Iﬂﬂas.o.n._B.a.lmr_and_K.o.lled |2110.d).

3.4.2 RPT method

As seen in the last section we could give accurate results for the spectral functions with the
NRG method. In this section we would like to use the renormalised perturbation theory
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to calculate dynamic response functions. The theory gives asymptotically exact results for
the w dependence for the self-energy, when we consider a second order expansion in U.
Here we would like to see to what frequencies we can extend the description by calculating
the relevant diagrams in the RPT expansion. The quality of the approximation can be
gauged with the NRG results. We will start by considering calculations for the dynamic
an susc%ilities, where it has been shown that the RPT can give very accurate results

).

Dynamic Susceptibilities

We calculate the RPT approximation for the dynamic transverse spin susceptibility in a
series of repeated quasiparticle scattering as described in section and discussed by

(IZ__(E) This is reminiscent of an RPA approximation, the propagators, however,
are expressed in terms of renormalised parameters. Here, we focus on the transverse spin
susceptibility x¢(w, k), although the method is also applicable for other susceptibilities
m ). The diagrammatic expression was given in figure X7l and we want to
generalise these earlier results to the case with a magnetic field. Hence, we define the field
dependent the pair propagator H’I}EU(w, h) as in equation (&),

dwl ~ ~
T (w,h) = — / G+ )G, (). (3.34)
The analytic solution is
_ 1 11y, (oihtissn@A — 9
Sgn(w) (iﬂ oiih+iAsgn(w) + 2rA log (—aﬁh—l—isgn(w)A)) for w = 27]h
h —
Hpgo' ((.U, h) - lo (w—oﬁh+isgn(w) A ) lo (w—oﬁh-kisgn(w)é)

o sgn(w) S onh+isgn(w)A _ S 7o'nh+isgn(w)A~ OtherWise

o w—207}h w—207h+2isgn(w)A )

Note that H’I}U_"(w, h) = HQZU(—w, h) as can be easily seen, also that for w = 0 we find
e
1Mo (0,h) = M (3.35)
L 7Téd,(f ’
where we use £q , = ofjh. The full series for x;(w, h) is obtained as

1 1,7, (w, h)
21— UL, (M7, (w,h)

xt(w, h) = (3.36)

The effective, renormalised vertex Ul?fa(h) can be determined as described in section
with the help of the exact static result. In the case with finite field we have as in (B,
m(h)

xi(0.h) = " = e (i /A 1), (3.37)
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where we have used the expression for the magnetisation ([B2) in terms of the quasiparticle

parameters. This yields for the effective interaction
wh(n —1)

Uho ( — - - )
tan="(7h/A(h))

p—0o

(3.38)

Note that there is no explicit dependence on U(h) in this case. Since, however, the field
dependent renormalised parameters are not independent as seen in equation (BF]), the
dependence on U(h) can enter explicitly. In the limit h — 0 we find with

lim 73(h) — 1= Ug5(0,0) (3.39)
that _
~ U
ho
Uk, (0) (3.40)

T 1+ 0550,0)

as before in equation ([Z62).
In figure we show RPT results for the case U/rA = 4 for the imaginary part of
Xt(w,h) (ph-RPT) in comparison with corresponding results from an NRG calculation.
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Figure 3.5: The imaginary part of the transverse susceptibility h = 0 (left) and h = Tk
(right). The renormalised perturbation theory results (ph-RPT) are in good agreement
with NRG results over the whole frequency range.

We can see in the plots that for zero field (left) that the results agree remarkably well
over the full frequency range shown. Also in the case of finite field, h = Tk, which is
shown on the right hand side the curves agree very well apart from the discrepancy in the
peak height. The NRG calculation for the susceptibility is based on the complete Anders-
Schiller basis. One finds that both the RPT result and the NRG results satisfies the sum
rule relating the integral over Imy,(w, h) to the magnetisation.

In the article by Hewson (2006) it is shown that the RPT results give an accurate
description of the spin and charge susceptibilities for zero and finite arbitrary magnetic
field values H, and for frequencies w extending over a range significantly larger than the

Kondo temperature Tk.
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Approximations for the renormalised self-energy

We would like to give a description of the Kondo resonance in magnetic field such as in
figure B4 (right) in terms of the RPT. A first approximation for the low energy spectrum
is given by free the quasiparticle spectrum p(w) as given in equation ([CI3). As explained
in section corrections can be included via a renormalised self-energy ia(w). In order
to compare the quality of the RPT approximation for ¥, (w) we would like to compare it
with a different result. If the original self-energy of the problem X4 (w, ) is known, 3q(w)

can be expressed as

Yo (w) = 2y (h) <E(,(w, h) — xR0, n) - M%EE(O, h)> . (3.41)
In the following we will use results for ¥, (w, h) deduced from NRG calculation and equation
BZ1) to compare with RPT results.

In figure (left) we show the full NRG spectrum (dot-dashed line) for a strong
coupling case U/mA = 4 for zero field. To see that the RPT approach is in principal
valid on all energy scales we have dressed the non-interacting quasiparticles ﬁg(w) with a
renormalised self-energy as given in (BZ1) and added as “RPT” in figure (left).
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Figure 3.6: Left: Comparison of strong coupling spectra: Renormalised parameters (RP)
and spectrum ([CI3)), Renormalised perturbation theory with full renormalised self-energy
(RPT) (B41) and Numerical Renormalisation Group (NRG). Right: Comparison of the
low energy behaviour of the one-particle spectral density for particle hole symmetric case
and U/mA = 4 calculated in different RPT approximations and the NRG result.

We can see that full agreement with the NRG curve is found. Note that this is not just
a trivial rewriting of the propagator, since the renormalised parameters are not calculated
from the self-energy, but from the low lying excitations at the fixed point. We have
also included the free quasiparticle spectrum p9(w) ([B3) in terms of the renormalised
parameters (RP), which is seen to describe the very lowest energy behaviour, namely the

Kondo resonance.
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The simplest dynamic correction to the free quasiparticles from an RPT calculation
comes from the second order (SO) diagram [see fig. 224 (right)],

57(2) UQ/ o 2T (wo, h) GO (w — wa). (3.42)

The pair propagator H’;ia(w, h) is given as in ([B34). As mentioned before this gives the
asymptotically exact w? behaviour for the imaginary part. The corresponding renormalised
self-energy is obtained by including the counter-terms, as well. As explained in section
to this order we only need to take into account the trivial counter-terms X< (w) =
—[A1,0 +A2,0w]. In the field dependent case we actually get a finite contribution to Az from
the vertex diagrams as shown in figure This gives, however, no dynamic contribution
to the renormalised self-energy as A3 = O(U(h)?). The renormalised self-energy to second
order is then given by

S (W) = 2@ (W) — Ao 4 Aoow], (3.43)

where A, and A2, are determined by equation (ZZ40). Finite order expansions to higher
order extend the frequency range where the renormalised self-energy gives an accurate
description. A different way of extending the perturbative corrections is to include a
certain class of diagrams. As illustrated in the last section this gave accurate RPT results
for the transverse spin susceptibility in terms of a repeated quasiparticle scattering series.
As well known from the study of metals near a magnetic transition and the analysis of the
Kondo problem, spin fluctuations are the crucial processes in this regime. Mathematically,
the simplest formulation for that is an RPA-like repeated scattering series, where a typical
term for the self-energy is diagrammatically depicted in figure 21 The renormalised self-

energy corresponding to this process is given by (IB.aJ.Ler_at_aJJ |2.0.01£J)

dw ~
Eg,ph( ) = U1/27r22xt ((U—WQ,h)G(lU(WQ), (3.44)

with x7(w,h) as given in equation (B30) with U;“’U replaced by U;. It is not directly
clear for this approach where an infinite series of diagrams is considered what counter-
terms have to be included. For the most straight forward expression for the renormalised
self-energy $"(w) in this case we only include the trivial counter-terms %< (w). The
renormalised self-energy in this approximation of repeated particle-hole scattering f]gh(w)
is then given by an equation like (BZ3)) and again the parameters \; , are determined by
the renormalisation conditions (ZZ0). Such a procedure is not rigorous, but it is adopted
here as a first strategy to test this kind of ph-RPT approximation. A formally more
satisfactory scheme for calculations with infinite series of diagrams can be given in terms
of a self-consistent theory derived from a Luttinger Ward functional. This is described in
appendix [C. 3 and remains for future research to be investigated.

We still have not specified the effective interaction U;. This can be done by calculating
the full renormalised vertex and using the renormalisation condition (ZZT]). We proceed



58 Field dependent quasiparticle dynamics in the Anderson impurity model

here as outlined in section EZZ3] where it is argued that for this simple RPA like approx-
imation the full vertex is just a sum of the terms shown in figure 71 From this we find
with (B340 and the condition (Z4T]) that

. U(h)
O = 0 e )

d,o

(3.45)

This reduces to the earlier result [Z64) in the limit » — 0. Note that this expression
BZ3) is in general different from expression ([B38) used for the dynamic susceptibilities.

The numerical comparison, however, shows that the corresponding values are very similar.
Results for the dynamics

In the following we compare

e results derived from the renormalised self energy of the second order diagram (SO-
RPT), cf. equation (EZ]),

e results derived from the renormalised self energy and the repeated quasiparticle scat-
tering (ph-RPT), cf. equation (B4,

e the renormalised self-energy deduced from an NRG calculation and equation (BZT]).

We consider the strong coupling case U/mA = 4 first for zero magnetic field, h = 0. In
figure B (left) we compare the results for the real part of the renormalised self energy for
the calculations specified above.
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Figure 3.7: Comparison of the dynamics behaviour of the real part (left) and imaginary
part (right) of the renormalised self-energy calculated with second order RPT (SO-RPT),
repeated particle hole scattering RPT (ph-RPT) and NRG.

We find that that for small w the two perturbative approximations agree, but start to
deviate for w > 2Tk. The slope for the real part of the second-order perturbation theory
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(SO-RPT) is larger than the repeated particle hole series (ph-RPT); the exact asymptotic
behaviour, (1 — z)w, found by the NRG calculated ReX,(w) is not reached by either.
Similarly, we compare the imaginary part of the renormalised self-energy as shown in
figure B (right). For small w we find a good agreement for the SO-RPT self-energy the
ph-RPT self-energy and the one calculated from (BTl and the NRG. However, as soon as
the Kondo scale is reached the approaches give contributions of quite different magnitude,
where the smallest one is found for the repeated scattering diagrams.

In the earlier figure on the right, we compare the resulting low energy spectra
for free quasiparticles based purely on the renormalised parameters (RP), the two RPT
approximations and the direct NRG result. For small w all results agree well. The free
quasiparticle spectrum (RP) falls off too rapidly as compared with the NRG result. Both
of the two RPT approximations give corrections towards higher energies, but it remains
inconclusive which of the two is the better approximation for larger w. It is useful, therefore,
to study the situation with a magnetic symmetry breaking in which each component of
the spectral density departs from the Fermi energy.

Therefore, we turn our attention now, for the same strong coupling situation with
U/mA = 4, to the finite field case. For h/Tx = 1 we can see the results for the spectral
density calculated with the different RPT approximations in figure (left).
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Figure 3.8: Strong coupling spectra in comparison for h/Tx = 1 (left) and for h/Tx = 4
(right).

Unlike in the case of zero field the results for the free quasiparticle propagator (RP) is not
at all in agreement with the NRG spectrum. It does not include any suppression of the
peak height typical for finite magnetic field. In contrast, one can see that the second order
perturbation theory (SO-RPT) gives a dynamic correction in the right direction, albeit too
small, whereas the repeated process (ph-RPT) renders a dynamic correction of the right
magnitude. Differences in the peak height are visible, but they are rather small. We can
see that, whilst for the low energy flank of the peak the agreement is very good, for the
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high energy side the RPT results become inaccurate. This, however, is expected, since for
higher energies other processes, such as charge fluctuations, will start to play an important
role and need to be included in the renormalised self-energy.

In order to understand the discrepancy between the different approximations in terms
of the corresponding renormalised self-energy, we plot them in the case h/Tx = 1 in figure
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Figure 3.9: Frequency dependence of the real part (left) and imaginary (right) of the
renormalised self-energy for h/Tx = 1.

Generally, we find that whilst the SO-RPT self-energy assumes greater values for higher
energies, for small energies, w < 27k, there are larger contributions from the ph-RPT
series, which are also found in ¥, (w) as computed from (&) with the NRG. This effect is
seen more pronounced in the imaginary part in figure B (right). These contributions are
important for the correction of the position and width of the Kondo resonance in a finite
field starting with field dependent renormalised parameters. Since we find good agreement
between the ph-RPT and the NRG result we conclude that up to these energies the chosen
repeated quasiparticle series includes the most important contributions for energies up to
Tk (Bauer et all 007a).

It is interesting to see up to what magnitudes of field strength the RPT approximation

agrees well with the NRG results. For a quite large field, h/Tx = 4, we display results for
the spectral density in figure (right). One can see that the ph-RPT agrees quite well
with the NRG result. Differences in the peak form of RPT and NRG can be attributed to
broadening effects. The interpretation of this behaviour can in a similar way be understood
as in the above case for h/Tx = 1. At higher fields such good agreement is not achieved
anymore, and the RPT description is less satisfactory. At such field strengths, however,
the Kondo resonance is already suppressed substantially.

Our conclusion from these considerations is, that for the low energy behaviour and not
too large magnetic fields h < 47Tk, the most important contributions to the renormalised
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self-energy are included in the repeated scattering processes shown in figure £ In the
presentation here we have deliberately focused on these processes, although other series,
such as the ones representing longitudinal spin fluctuations or charge fluctuations could be
calculated in a similar way. Such calculations have been carried out and analysed, but it
was found that the effect of including these does not alter the results much.

Both the NRG as well as the RPT calculations can be extended to the non-symmetric
AIM with magnetic field. The main differences for the case of a magnetic field in situa-
tions without particle-hole symmetry is that the wavefunction renormalisation factor z,(h)
depends on the spin index o, and as a consequence so does the effective resonance width
Ag(h), so the equations given earlier for the particle-hole symmetric model have to be
generalised. The details for this are given in reference [Baner and Hewson (IZ.0.0ZA)

In summary, we have shown in this chapter that the methods of NRG and RPT can
be used for the description of the AIM in a magnetic field. We showed that the mag-
netisation and the static response functions can be well described in terms of the field

dependent renormalised parameters. We have used these parameters to calculate the dy-
namic transverse spin susceptibilities in the RPT formulae and we find excellent results
when compared with those obtained from a direct NRG calculation. It was also shown that
a good approximation for the renormalised self-energy for frequencies up to the order of
the Kondo temperature could be deduced by focusing on the transverse spin fluctuations
part in terms of renormalised quasiparticles. The comparison of resulting spectral function
for one spin component in a field with NRG gave good agreement for magnetic fields h up
to the order of a few Tx.






If there is not complete agreement between
the results of one’s work and experiment,
one should not allow oneself to be too dis-
couraged, because the discrepancy may well
be due to minor features that are not prop-
erly taken into account and that will get
cleared up with further development of the
theory.

Paul A.M. Dirac

Chapter 4

The Anderson impurity model in
magnetic field in non-equilibrium

In this chapter we extend the RPT calculation for the AIM in magnetic field to the non-
equilibrium case. We first discuss the relevant experimental situation and recent results of
measurements of the field dependent differential conductance through a quantum dot in
the Kondo regime. We analyse how well these results can be understood with theoretical
estimates based on equilibrium theory. Then we introduce the non-equilibrium theory
for the two-channel AIM and the corresponding RPT. We present asymptotically exact
results in the low voltage regime and finite field regime, and also results for the dynamics
at higher voltages. All calculations are based on the non-equilibrium RPT with field
dependent renormalised parameters.

4.1 Transport through a quantum dot

Tunable mesoscopic systems, such as quantum dots, have a attracted much attention
from experimentalists as well as theorists in recent years. One reason is that they have
proved to be extremely useful to study strong correlation physics, such as the Kondo

effect (IKmm&n.hmmu_a.n.d_Gla.zmaﬂ |2.0.0J]) This development was stimulated by the ex-

traordinary progress in fabricating, probing and experimentally handling these nanoscale

systems, which lead to many accurate measurements of the Kondo behaviour in such

structures (IB.a.].p.b_a.n.d_Bu.h.Lmaﬂ |].9.9_4‘ klr_o.u.eum.t_at_al] |].9.9.d |G.0.Ld.ha.b.e.u10.r_d.o.u_at_a.].]
|].£19.8H thLEna.n.c.esch.l_e.t_al]hﬂ(ld |K.an.n_&t_a.].”2ﬂ0_4‘ |A.m.a.sha._e.t_a.].“20ﬂﬂ As shown by
\Goldhaber-Gordon et all (I]_9_9_8A the equilibrium Kondo effect in quantum dots, such as

the scaling of the temperature dependence of the zero bias differential conductance with

the Kondo temperature Tk can be understood quantitatively with the theoretical methods

at hand (IH.FAMSQ_IJ I].9.93£J, Closti et al) I]_9.9£‘) In the last chapter we studied in detail the

behaviour of quantum dot like system in a magnetic field. Experimentally, this behaviour
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is investigated by measurements of the finite bias differential conductance, which really
represent a non-equilibrium situation. To understand the experimental results properly it
is therefore necessary to establish a full theoretical understanding of the out of equilibrium
Kondo physics. We have to distinguish two types of non-equilibrium behaviour here: (a)
relaxation from an out of equilibrium state, such as studied in time-dependent reduced

density matrix NRG approach (IA.n.d.ets_a.n.d_Ss;h.Lller] |2.(10£'i) and (b) the voltage V induced

steady state current transport situation. Here we will focus on the latter case. First we

will study how well measurements on quantum dots in a magnetic field can be described
by equilibrium quantities as calculated in the last chapter.

A general expression for the current through a quantum dot derived in non-equilibrium

theory (I]i&tsh.ﬁ.&l.d_&t_al]h.%l], IM.&ILB.D.dJM.U.gL&&deQd) reads

AT TR

LR Gt (w, eVy)], 4.1

I = % ;/dw [fr(w) — fr(w)]

where G5 (w, eVys) is the steady state retarded Green’s function on the dot site, and fr,(w),
fr(w) are Fermi distribution functions for the electrons in the left and right reservoirs,
respectively, fo(w) = np(w— f1a), np(w) = [1+e%]71. Usually the chemical potentials are
given by ur = pg+eV/2 and pur = pg — eV/2, where Vi, = V' is the source drain voltage
and pg is the chemical potential on the quantum dot. I'y and ' describe the coupling
to the left and right lead, respectively, and Gy = e?/7wh is the quantum conductance
limit in mesoscopic transport with Planck’s constant h. All these quantities relate to
the formulation of the two channel Anderson model, which is depicted in figure B3 For
symmetric coupling to the leads we have I'y, =T'g = A/2,

Equation (] is a generalisation of the earlier expression (B30) for the linear response
differential conductance G = dI/dV . The differential conductance is the quantity which
can be accessed experimentally and therefore (EJl) provides the connection between the
theoretically obtained Green’s function G%(w,eV) and the measured current through a
quantum dot.

Quantum dot experiments (IK.oga.n_&t_a.]J |2.0.O_4‘, |A.m.a.sha._at_a.].] |2.0.0.EI) in the presence of

a magnetic field have been performed in non-equilibrium situations with a finite source-

drain voltage V. In the last chapter we had seen that in a magnetic field the Kondo
resonance is shifted from the position at the Fermi level. Therefore, for field strengths
larger than a critical value h. two peaks can be observed in the differential conductance
as a function of the voltage V. There have been several interpretations dmandﬂ&d

IZ0.0.d, Ilmgan_and_[ll.ck&usl |2.0.0J]) of these results based on the approximation of using the

equilibrium Green’s function to evaluate Gt (w,eV') in @I)). With this approximation

at T'= 0 we get an expression for the differential conductance G(V') as a function of the

voltage V,
ﬂ _ GomA

av 2

G(V) = paleV/2). (4.2)
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In this approximation G(V) is directly proportional to the total equilibrium spectral density
pd = pdq + pa,| evaluated at w = eV//2, which is shown in figure Bl for the parameters
used earlier (U/mA = 4) and a range of magnetic fields. The peak splits above a critical
field, h. 2 0.5T%, which in agreement with results for the Kondo model (@ M) A

o 8———
— hiT =0.18
— T, =0.35] [ a-a B;nﬁ: 421
_ 0-0 U/mA= R
15- - h/TK =0.53] 6l oo AT, (exp) o B
- T =071 - 2hr, oid
« A
h/T, = 0.88] -9
3 - hT, =119
= — hIT, =1.76]
g
E

Figure 4.1: Left: Total spectral density of the d-site pg(w) for various fields h. One can see
that the peak splitting becomes visible only for fields h 2 0.5Tk. Right: We compare the
peak position in the differential conductivity V},, as deduced from equation (EZ) and the

NRG results for pq(w), with Vj exp = Ak deduced from experiment IKan.n_&t_a.].] (IZO_OA‘)
The Kondo temperature is inferred from the critical field for the peak splitting to be

observed, B ~ 9T and the strong coupling result h. ~ 0.584Tk, which is derived later
in this chapter.

maximum of the differential conductance, occurs when one of the quasiparticle peaks in
the spectral density is coincident with the left Fermi level at pg + eVys/2 and at the same
time the other peak coincides with the right Fermi level, ug — eVys/2. This is illustrated
schematically in figure

It is important to be careful when quantifying the magnitude of the splitting of the Kondo
resonance for fields larger than the critical field, h > h.. In the interpretation of the

experimental results of dI /dVy the splitting of the Kondo resonance AS:E&O was identified
with the voltage splitting seen in the differential conductance e(Vng V) = Agﬁ()i’;/

(IKoga.n_&t_a.].] |20ﬂ_4‘, |Amasha et all |211(l£1). We had denoted the peak position of one spin

component of the Kondo resonance in the spectral density by €,(h) in the last chapter. The
splitting between the up and down peaks in the total spectrum is Agffz)ﬂw = 2¢e,(h) f.(h),

where f.(h) is a correction factor due to the overlap of the resonances (IH.PJMSQ.U_PJ;_&]J ).
It is common to compare the Kondo splitting with the Zeeman splitting Az = 2h. It should
be noted that results based on equation (£Z) include the change in the chemical potential
on the dot ug with the applied voltage VEI and the Kondo resonance, being a many-body

1t is assumed that pg always is at the average position of yz and pug, which for I'y, = 'y is most
reasonable.
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pa + €Vis/2

Hd pa — eVas/2

R
—

(a) (b)

Figure 4.2: A schematic plot of the spectrum on the dot and chemical potentials for
left /right lead (ugq £ €V/2) and dot (ug) for (a) zero bias and zero magnetic field and (b)
finite voltage and finite field.

resonance is tied to this chemical potential (IH.PJMSQ.U_&L&]J IZQ.O.EJ) as illustrated in figures

Therefore, as seen in equation (EE2) voltage and frequency arguments, eV and w,
(exp),V _ 9 A (exp).w
Kondo Kondo
the spectral density. Therefore, if experimentally a splitting in the differential conductance

is identified as larger than twice the Zeeman splitting, A%?:E()i’ov > 2Ay, based on (E2) it

respectively, are related by a factor of two, hence A for Kondo splitting in

implies that the corresponding Kondo splitting in the spectral density is merely larger

than the Zeeman splitting, A%?Z:E()if > Ay, differing by a factor of 2 from the conclusion in

reference IKan.n_et_a.]_] (|2_0_0_é‘)

To test whether the experimental results can be explained on the basis of equation ([2),
we have extracted the voltage peak position V), which corresponds to half the magnitude of
the peak splitting for U/7A = 2,4 and a range of fields. The comparison with experimental
results (IK_ann_e_t_aJJ |20_0_4) is displayed in figure BTl (right). We can see there that, whilst
there is an agreement in the range h/Tx ~ 0.5 — 1, in general there does not appear to be

a satisfactory quantitative explanation of the experimental results based on approximating
the non-equilibrium Green’s function by the equilibrium one as the splitting of the Kondo
resonance is overestimated like this. We conclude that an agreement of experimental and
theoretical results rests on an accurate description of the steady state situation out of
equilibrium. In fact, one must stress that source drain voltage sweeps for the differential
conductance in quantum dot systems do not give direct information about the equilibrium
density of states as sometimes assumed. We will therefore in the remainder of this chapter
extend our analysis to the non-equilibrium transport situation and start by giving the
formal setup for the two channel AIM.



4.2 Formal setup for the non-equilibrium theory 67

4.2 Formal setup for the non-equilibrium theory

4.2.1 The two channel Anderson model and Keldysh formalism

In this section we consider a transport situation through a local interacting system, like a
quantum dot (QD). The Hamiltonian has the general form corresponding to the sketch in
figure 23]

H=H;+Hry,+Hp + Hrgr + Hp. (4.3)

H, (a = L, R) describes the left and right lead, respectively,
Ho = kathgaChaa = = 2150 o1 (44)
k,o 07,0

We assume 4,j < 0 for the operators in the left lead « = L and 4,5 > 0 for « = R.
€ka = €k + o includes the left and right chemical potential and gives the dispersion for

the tight-binding chain form in (E4]).
Vi eqt+U

° Vr..L

KL HR

Figure 4.3: A schematic picture of the two channel Anderson model.

Hrp,, is the tunnelling term between lead « and the dot. We can collect the left and right

contribution to a mixing term of the form
Hpmix = — Z VL(CL,Jc,LU +h.c.) — Z VR(Cigch + h.c.). (4.5)
g g

Hp describes the isolated local system, which will in our case be an interacting Anderson

s-level impurity,

Hp = Z €d7062706d70 + UCIl,TCd,TCIl,icd,l =Hpo+ Hpyu. (4.6)

o
We have allowed for a local magnetic field h = gugH /2. To consider the transport problem
we employ the Keldysh formalism (Keldysh 11965, Rammer and Smith [1986) and follow the
formulation of |Caroli et _all (1971). Thus, Hy = Hp+Hgr+ Hp o is the equilibrium starting
point and the term Hy(t) = e*‘ﬂ“(kfmiX + Hp ) is adiabatically switched on. The main
aim is to calculate the on-site retarded non-equilibrium Green’s function G'*(w, €V'), which
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determines the current through the interacting quantum dot as seen in equation (EZI]). This
can be done by a perturbation theory, which is set up in analogy to the equilibrium case.
In order to avoid the unknown ground state at ¢ = oo, one has to work with additional
Green’s function on the Keldysh contour Cxk as depicted in figure B4 . This is conveniently

done by introducing 2 x 2 matrices in Keldysh space (IKP_]d.;LSﬂ M, [Rammer and SmitH
11986, Zagoskin 1998, l0guri 2006).
Ck

—00 )oo

Figure 4.4: Keldysh Contour

The non-interacting two-channel problem can be dealt with explicitly. We assume wide
conduction bands and the mixing of quantum dot with the leads is described by the hy-
bridisation constants T (w) = —V2Imgr(w) = T, MM) Here, the retarded left

o
ret ret ret ret

and right lead Green’s functions are ¢*%_;(w) = ¢ (w) and gi{'(w) = ¢} (w). One finds
the local unperturbed Green’s function

o) () = (GS?;’(LU) Ggl(,)t)fﬁJr(w) > ) (4.7)

“d,o Gg?;,#»* ((.U) Ggl(’)),JrﬂL (w)

[

where the —/+ index corresponds to the first/second part of the Keldysh contour Ck,
respectively. The matrix elements, which include the voltage dependence explicitly, are

given by
(0),——  w—e&ge — A1 - 2feg(w))
Gd,o’ (CU) - (UJ _ €d70-)2 + AQ ) (48)
_ 2iA fe
GO W) = —= et () (4.9)

(w - 5d,0)2 + AZ°

_ —2iA(1 — f.
GO (W) = (ZZ—E:ZU)Z f(Z?, (4.10)

and Ggl?()y’++(w) = —G’El?()j’__(w)*. We have defined A = I';, + I'g and introduced the

function
e _ Tufuw) + Tafaw)

fer() I'p+Tr
We will assume in the following pg = 0 such that up = eV/2 and ugp = —eV/2. The

(4.11)

emphasis for the calculation in this chapter is laid on zero temperature, such that np(w) =
1—0(w).
In the interacting theory the full Green’s function is given by the Dyson matrix equation

Gup@) ' =GP (W) — By (). (4.12)

g

The components of this self-energy Edp(w) can be determined in perturbation theory,
which is conveniently described in the path integral formalism (Iqu_r_i |20_(1£], |2_0_0_d) Thus
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the Anderson model for transport through a quantum dot in the Keldysh formalism is
characterised by the effective action S = Sy + Sy with

So=Y_ /dt/dt’ d, ()G (t — 1) d, () (4.13)

—00 —0O0

where d,(t) :=(dy —(t),dy+(t)) and

Qg,)) (t _ tl)fl _ QL/dw Qg?;(w)flefiw(tft’).

7 T
Qgg(w) is given in (E). The interaction term reads
Sy ==U [[dt (ra (004 (0) = a1 (g0 (4.14)

The partition function of the model is given by
Z = /D(dg,ao)eis[dvﬂvl (4.15)

Comparing this with the results in section ZZT] we can see that the theory has the same
structure as in equilibrium with the only difference that we have to take into account the
additional degrees of freedom in matrix form.

Non-equilibrium renormalised perturbation theory

We also have to generalise the setup of the renormalised perturbation theory from chapter
2 to the non-equilibrium case. The details for this are given in appendix [C4l The renor-
malised parameters are defined for zero temperature and in the equilibrium limit, eV — 0,
and we can therefore for their definition focus on the equilibrium retarded self-energy
Y (w). In the Keldysh formalism it is generally given by

St (W) = 5, (W) + 5, (W), (4.16)

As seen in chapters 2 and 3 for the equilibrium RPT it is useful to include the magnetic
field dependence in the self-energy, and then the definition of the parameters essentially
coincide with ([Z33) and 3) with X, (w) — 22(w) . The renormalised interaction U (h)
is defined as before by the effective quasiparticle interaction of the problem, which is given
by the full renormalised four point vertex function at zero frequency (Z37). Note that the
renormalisation conditions (ZZ0) and (ZZT]) only have to be satisfied in the equilibrium
limit. The matrix for the non-interacting Green’s function in terms of the renormalised

parameters is

(4.17)
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where the matrix elements are given by [cf. (EEX)-(EID)]

6(0)777((‘0) _ w — édp — iAU(l — 2feﬁ(u.))) (4 18)
d,o - (w _ 5d,g)2 + A?, ) .
_ 2iA
GO W) = — oforlw) (4.19)

(w — E40)2 + A2
GO () — —2@Aa~(1 — fer(w)) (4.20)
(W - 5d,a)2 + ACQT

and CNJES()T’JFJF (w) = —@S?;’ff(w)*. The renormalised perturbation theory can be set up in
the one-particle irreducible scheme as described in section and we only have to respect
the matrix structure (see appendix [C4]). We will be mainly interested in calculating the
retarded renormalised self-energy (EZT0]). Therefore, we can focus on the combinations
At = AT 4 )\Z-_+ for the counter-terms, and in the simplest case determine the value

directly by the renormalisation condition (ZZ0), such that

AN =507 7(0) + 22 1(0) (4.21)

and
M= () 2 @) (4.22)
22“5 is the self-energy calculated perturbatively, and in the above equations we take the

limit eV — 0. The voltage dependent renormalised retarded self-energy is then given by

YW, eV) = X0 (w, V) + B0 (w, eV) — Aetw — It (4.23)

g

We will give an example for the diagrammatic expansion for the second order diagrams for
T = 0. The diagrams are of the same form as the one sketched in figure 24 (right), however,
the vertices can enter with different sign £+ depending on which part of the contour they
corresponds to. The convention here for the Feynman rules is a “+4”-sign for the vertex on
the lower contour (—) and a “—"-sign for the vertex on the upper contour (4). The earlier
introduced pair propagator (ZEIl) becomes a matrix in Keldysh space H’I}EU,

hO’,(——) hO’,(—-‘r)

II II

HZEU = ( Z;,((T-i-—) Z;,J-H-) ) ) (4.24)
1L, IL,~,

whose matrix elements are given by

o) =i [ SR w06 ) (4.25)
7'(- ) )
L) =i [ GRG0 k)G ) (4.26)
7'(- ) )
o — . dw ~ _ ~ _
7wy =i / TG (w4 w) G (wr) (4.27)
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and HZi’éJrJr)(w) = —[HZf’éfi)(w)]*. All four pair propagators can be calculated analyt-

ically for finite voltage and magnetic field. The resulting expressions are, however, long

and not very instructive. The negative spin expressions for the Green’s functions yield
Hga—a,(——)(w’ h) = Hha,(——)(_w’ h) (4.28)

p—0
and HZU_J’(_H(w,h) = ngf’;_)(—w,h). The matrix elements of the second order self-

energy read (o, =+

02 o.(a ~ Q,
S50 w) =~ (a8) g [den T (0 = on) G (). (4.20)

For the symmetric AIM and symmetric coupling to the dot 'y, = T'r = A/2 , and we have
fefi(w) = [f(w—€eV/2) + f(w+€eV/2)]/2, which is symmetric for V' — —V. Since the only
dependence in the free Green’s functions comes from this factor, the self-energies satisfy

270"_(2)046(w’ —BV) = 22(2)0‘6((4), GV) (430)

By examining the specific expressions for the Green’s function (EIR)-E20) we also find
for the retarded renormalised self-energy (EEI6) in the second order expansion that

S@ret () = —H@ret(_y,yx, (4.31)

Hence, to second order it is enough to calculate, say, the spin up retarded Green’s function
and the other one can be inferred from (E3T]).

4.2.2 Low voltage asymptotics for the self-energy

Asymptotically exact results for the small voltage dependence of the self-energy have been
derived by IQgJ.Lr_{ (IZD_OJI, |2.0_O.Ei) His arguments are based on Ward identities and relate the
derivative of the self-energy to the equilibrium vertex function. The considerations can
be viewed as an extension of the exact results by Yamada (IJ_Q_ZEH) for the w dependence.
These exact results are reproduced by a second order renormalised perturbation expansion
in U in the Keldysh formalism M) which yields

N
= 3 1 U
Yi(w, Vys) = —ic w2—|——eV52], ith c= — | — | . 4.32
(r V) { 1(eVs) v oA \ 7A (4.32)

When a magnetic field is included this result can be generalised in the renormalised per-

turbation theory framework (I]:Lmnsg_n_at_aﬂhﬂ_ﬂﬂ) Starting point is equation (E29)) for the

second order self-energy diagram. The retarded self-energy is given by the combination in

equation [I6). X~ is purely imaginary, and therefore for the real part contribution we
only have to consider X~ as given in ([EZ9)). For T'= 0 we can expand

(eV)?
8

o = 3U1() + fr)) = 1- 0@) - S50, (4.33)
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The Green’s function é&ot)f’** can thus be expressed as

O iAR20(w) —1) A (w)(eV)?/4
4o (w—E40)% + A2 (W —E40)% + A2’

(4.34)

where the first term is identical to the equilibrium T = 0 causal Green’s function. This
means that the (eV)2-term is found by three terms where in each of them one Green’s
function is replaced by the second term in (34 and the other two are equilibrium Green’s
functions. Comparing this with equation ([BZZ3]) we see that this expansion is apart from
the prefactor completely analogous to the low order temperature expansion in the last
chapter. We find that the renormalised self-energy for finite field A to order w? and Vd2s
can be expressed in the form,

B B . eVdS 2 éd,o(h) GVdS i
£ (w, Vas) = —e(h) [ <w2+3<—2 ))* An) (a‘”(h)w2+aV(h)< 2 > )(] |
4.35

where _
T (W70, W
2

The quasiparticle density of states g9 _(w,h) is given in equation [B3). The coefficient

c(h) = (4.36)

o, (h) for the expansion of the real part of ¥, (w, Vy) is given as in equation ([ZI). The
result for ay (h) is

A(h) ao(h), <5d(,(h)> A(h)
ay(h) =3+ — < 1- = tan e 4 + — .
V(D) =34 Sz L A NG O IEL )]
(4.37)
In the limit h — 0 equation (E3H) reduces to [3J). For a certain magnetic field h

the coefficient ayy(h) changes sign and thus the asymptotics of the real part of the voltage

dependence. In a generic strong coupling situation U/mA = 4 this happens for h, ~ 0.46Tk.
Also in the large voltage limit asymptotic exact results can be derived (Qguri 2002).

4.3 Differential conductance for low voltage

In this section we will employ the asymptotically exact results for small voltage to study the
behaviour of the differential conductance. Starting from (BI), for particle hole symmetry
we can express the differential conductance for zero temperature as

eV/2
dl _ GoA ot IGs (w,eV)
) (—ImGe(eV/Q eV Z/ dw[ Im—4 | (4.38)

If the voltage dependence of Gg‘j‘t(w, eV') was not important, the differential conductance
would be given directly by the first term in ([38) without the voltage dependence in
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the second argument. This was discussed in equation (EZ), and as a consequence the
differential conductance is identified with the spectral density on the quantum dot. In
general, the voltage dependence can not be neglected, and for the correct non-equilibrium
description for the differential conduction in equation (E38]), we need to calculate the
voltage dependence of the local Green’s function, which is incorporated in the renormalised
self-energy as shown in the last section.

4.3.1 Effect of the voltage on the differential conductance for small field

In this section we focus on the situation with a small magnetic field. Then we can use
the asymptotic result for the renormalised self-energy ([E30) to calculate the differential
conductance in equation (38). To clarify the effect of the finite voltage we consider
different approximations. The simplest situation is to ignore the renormalised self-energy
term completely, but use the renormalised parameters. The differential conductance at
T = 0 then takes the simple form,

I Gy A2
Rai—— . 4.39
av. 2 Z (eV/)2 — E40)2 + A2 (4:39)

g

We refer to this as (a) in the following. As (b) we refer to the case where the w? term in
the renormalised self-energy in (B30 is included for the calculation of dI/dV. For small
w this corresponds to (EEZ), where the equilibrium spectral density is used, and no non-
equilibrium voltage dependence is included. By (c) we denote the full first term in equation
[E38R) with the voltage dependence in the second argument of the Green’s function which
comes from the self-energy in (EE3H), but neglecting the second term in [E3X). (d) takes
into account the full expression (E38]) with the self-energy asymptotics (E3H).

We would like to analyse these expressions for a small magnetic field. If we plot both
the contributions (0 = 1 and 0 = —1) to dI/dVys in the very weak field regime then, due
to overlap, no magnetic field splitting can be observed. We can calculate, however, the
shifts in the component resonance for ¢ = v = £1. In figure we plot the terms in the
differential conductance (in units of Gy) given by equation [#@3R) as a function of eV/A,
where we use o =1 in ([E38).

We take values corresponding to the Kondo regime, with R =17 = 2 (é4,(h) = ofjh), and a
small field h/A = 0.05 (A = 4Tk). As explained above we have distinguished the different
contributions from (a) the case for the non-interacting quasiparticles as in equation (EZ39)
to (d) which takes into account the full expression (3R] with the self-energy asymptotics
(E30). As different contributions in ([EZ38) are included going from (a) to (c) we see that
the peak position and width is reduced. We also see that the integral term arising from the
voltage dependence of Gé‘?g (w, eV') causes a significant further reduction (d) of the magnetic
shift beyond that estimated from the first term (c) in equation (EE3F]), such that it cannot
be neglected. In an experimental conductance measurement, the component conductance
for small field is not observable, however, due to the overlap of the two components. The
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Figure 4.5: Left: The shift of the component resonance (¥ = o = 1) in the differential
conductance (in units of Gg) in a magnetic field for h/A = 0.05 as a function of the bias
voltage eVys/ A, according to the inclusion of different contributions as described in the
text. The arrows indicate the respective maxima. Right: The total differential conductance
(in units of €?/h) in the Kondo regime for larger magnetic field values, calculated using
equation (E3])) taking into account the full self-energy expansion from E30). These
results are asymptotically exact for eVdS/A < 1 and approximate, based on a second

order expansion in eVys for larger values.

results for the different cases in figure leave no doubt that the finite voltage has an
important effect on the peak form and position of the Kondo resonance in a magnetic field
- at least for small fields. We expect that at larger fields h ~ T the effect will also not be
negligible.

4.3.2 Critical field for peak splitting

The arguments for the voltage dependence in this section are restricted to the regime
where eV is small compared to A. These results are, however, sufficient for us to deduce
the critical value of the magnetic field h. at which two distinct peaks begin to appear in
the total differential response. For values of h < h. the differential conductance will have
a maximum at eV = 0, and for h > h, this will become a minimum. Thus, we can write

the differential conductance as

j—é = GO (h) + Ga(h) (eV)* + O((eV)") (4.40)
and from the coefficient Ga(h) we can determine the point at which the sign change occurs
as a function of h, and hence we can determine h.. In the first term in (E3X]) we have to
expand the denominator up to second order in (eV'). The contribution to the real part of the
self-energy to order w? and (eV')? is proportional to o7j(h)h. It might be thought that such
a term should cancel out in taking the sum over the two spin components. However, there

is a o-independent contribution from a cross term with the effective Zeeman term ohn(h),
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which has to be included. The contribution from the second integral term in equation
([E3R) to order (eV)? can be easily be evaluated, as it is sufficient to put w = eV = 0 in
the integrand after the differentiation. As a first estimate using the above results the value
of h. can be calculated analytically by dropping the h dependence of the parameters and
without the real part contribution to the self-energy expansion. The result, Ga(h.) = 0,
can be expressed entirely in terms of A and the Wilson ratio R = 7(0) = 1+ U/7A,

h2  /9+20(R—1)2(1+5(R—1)%) -3
A2 10R2(R — 1)? ‘ (4.41)

In the non-interacting case, R = 1 and h./A = 1/v/3 = 0.577 and in the Kondo regime,
R =2, A = 4Tk /n, and h./Tx = 0.582, with Tk given by (CI). If the voltage dependence
of the Green’s function is neglected the result in the Kondo regime is h./Tx = 0.491,
significantly smaller than if this term is included. This is in line with the observation
in figure that the peak position is reduced to smaller voltages when non-equilibrium
effects are included.

The estimated critical magnetic field is comparable with A, and for U =# 0 it may not
be sufficient to work to linear order in h. It is possible to work with an arbitrary magnetic
field, but in this case we have to use the field dependent renormalised parameters and the
full expansion of the self-energy to order w? and (eV)? as given in ([35). The equation
for the critical field h. becomes

R VB —alh)y(h)? +4y(h)(5 — a(h)) (1 +5y(h)) — 3+ a(h)y(h)

Ro(n) 23 (0)(5 — () A(h)? o (442)

where a(h) = a,(h) + ay(h), and

y(h) = T AR)U?(h)[73(0, )] = wA(h)53(0, k) (R(R) — 1)%. (4.43)

Equation (BEZ2) is an implicit equation for h. which can be solved by iteration starting
from the much simpler result ([EAT]), obtained within the linear approximation. Of course,
(E22) reduces to (AT if we drop the field dependence of the parameters and take a = 0.

For a strong coupling situation (U/mA = 4) the result for the critical field obtained
by iterating equation (EZZ) and using the h-dependent renormalised parameters is h, ~
0.459A = 0.584Tk. This differs only by 0.3% from the value obtained from @ZI). The
small difference is due to the fact that the various correction terms due to the h dependence
of the parameters in the more general formula ([22)) tend to cancel giving only a small
resultant change.

Plots of the total differential conductance for various fields above and below the critical
field are displayed in figure EX] (right). We have taken the full self-energy expansion as given
in (E30) into account, including the field dependence of the renormalised parameters. The
results are asymptotically exact only for small eV and a more complete theory is required
to calculate the magnitude of the splitting at larger bias voltages. The major problem to
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be solved is the dependence of the self-energy on the voltage bias term, when eV is of the
order of the Kondo temperature Tx, so that a detailed comparison with experiment can
be made with the experimental results in this regime. In the next section we present RPT
calculations for larger values of eV.

4.4 Higher voltages and non-equilibrium RPT calculations

In the last chapter in section B2 we have seen that in the equilibrium AIM with magnetic
field the spectral density could be described well in the RPT framework, up to energies
and fields of the order of the Kondo temperature Tx. We saw that it was not enough to
consider the second order diagram, but a class of repeated particle hole scattering diagrams
had to be taken into account. In this section we present results for the extension of these
calculations to the non-equilibrium. In order to calculate a good approximation for the
renormalised self-energy we adopt a similar strategy as the one, which has proven to be
successful in the equilibrium case. Therefore, the self-energy will be calculated by taking
into account repeated quasiparticle scattering. Before we consider these calculations for
the one-particle spectral function we look at the transverse spin susceptibility, in order to
get a first impression what the effect of the non-equilibrium situation and finite voltage on
the dynamic response functions is.

4.4.1 Non-equilibrium repeated quasiparticle scattering

When we sum up the repeated scattering series for the transverse spin susceptibility we
have to be careful that the signs at the vertex are taken into account correctly (convention
“—7-gign for +-vertex). Hence, in addition to the matrix for the pair propagator HZSJ

E2A) we define

ho,(—— ho,(—+
7, = t Eé(f (+)) Hpﬁé(f (++)) : (4.44)
_]'_‘[p—70' _]'_‘[p—70'

Then the series corresponding to the diagrams in figure X7 for the matrix for the transverse
spin susceptibility x; takes the form

o0
xe =T, Y (U8, 07 JF =T [1 - Up2, I, 7 (4.45)
k=0

The renormalised vertex UI’}j‘J is given as in the equilibrium theory in equation (B3F]).
The explicit result for x¢(w, eV’) is obtained by matrix inversion, where the determinant is
given by

D=(1-0nc)1 4+ oneo) + g2u-onto), (4.46)

We have dropped the redundant ph, o indices in the last equations. Similar series expres-
sions can be derived for other RPA like series in the Keldysh formalism.
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We consider the retarded, dynamic, transverse spin susceptibility and think of the
voltage like an external field,

xie(w,eV) = x§ (w,eV) = xi P (w,ev). (4.47)

This result is similar to the earlier one in equation (B336l), which is valid in equilibrium
case and finite magnetic field. In figure we found excellent agreement of the ph-RPT
results with the NRG results for x;(w, eV = 0) and arbitrary field; h = 0 and h = Tk was
shown there. Here we study the effect of the finite voltage and plot Imy;(w,eV’) for h =0
(left) and h = Tk (right) and various values of the voltage in figure
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Figure 4.6: The imaginary part of the retarded, dynamic, transverse spin susceptibility
Xt(w,eV) for h =0 (left) and h = Tk (right) and various values of the voltage.

The results for h = 0 and h = Tk and zero voltage are identical with the ones of figure
In the case of finite voltage of the order of the Kondo temperature we find that the
peaks in the susceptibility are suppressed, both in the zero and finite field case. The effect
is visible more strongly for smaller magnetic fields. Generally, the results seem to give a
sound representation for the system in finite voltage, and although we have no results from
an alternative calculation to compare to, the behaviour seems on general grounds to give
a reasonable approximation for the quantity.

Having derived expressions for the susceptibility we can now consider the matrix el-
ements of the to the repeated scattering corresponding self-energy XP" which have the
same structure as for the second order diagram (E29),

[72 6% «
Eg’ph’o‘ﬂ(w) = —1,/dw2 X,(f A (w— wz)GéOl B(wz). (4.48)

271 o

Xgaﬁ) (w) was given in equation (fZH), and we only have to replace 01?50 by U;. This

effective interaction U is found in the equilibrium limit and given as in (BZHE). The
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retarded self-energy is given by the combination in equation (EEIH). With the identity
2ImY; " (w) = —ImY; T (w) — ImX ]~ (w) (4.49)
and relations for the susceptibility, we obtain as in ([E3T),
SPI () = —SPR (—w)*, (4.50)

Therefore also here the negative spin part can be obtain from the positive one (particle
hole symmetric case). This implies for the imaginary part of the retarded Green’s function

ImGy* , (w,eV) = ImGs (—w, eV). (4.51)

The appropriate renormalised retarded self-energy S (w) is obtained in the equilibrium
limit by including the counter-terms as in equation ([EZ3).

4.4.2 Single particle dynamics in zero magnetic field

Before considering the field and voltage dependent case, we investigate purely the effect
of the finite voltage on the Kondo resonance with the second order RPT approximation.
Namely, we first study the splitting of the Kondo resonance with finite voltage in the RPT
frame work in zero magnetic field. From the asymptotic behaviour to order (eV)? and w?
in equation (B30 we immediately see that no splitting can occur due to the absence of a
mixed term. Rather than carrying out higher order asymptotic expansions, we analyse the
situation by numerically evaluating the second order diagrams [EEZ9)). In figure B (left)
we display the w-dependence of the imaginary part of the renormalised self-energy for a
number of voltages and a generic strong coupling situation (U/mA = 4).
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10 5 %)ITK 5 10 -4 -2 Ow/TK 2 4

Figure 4.7: Left: The imaginary part of the the renormalised self-energy EN]((,Q)ret(w,eV)
for different voltages. Right: Spectra for the shown renormalised self-energy for different
voltages.
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We can see that for finite voltage the imaginary part at w = 0 becomes finite, some-
thing visible from the asymptotic expansion (EE30). For increasing voltages the value
\Imf]((f)ret((), eV')| goes over from a minimum to a maximum in the w-dependence. The
effect of this behaviour of the renormalised self-energy on the spectral density in finite
voltage is shown in figure BT (right). We find that for increasing voltage the peak height
of the Kondo resonance is reduced from its equilibrium value For values of eV between
2 — 4Tk the curvature at zero frequency changes sign and the peak is seen to split in the
finite voltage. The numerical analysis shows a splitting to occur at eV, ~ 3.3Tk. We can
see that the broadened peaks are a bit less than the voltage difference apart. Therefore
one is tempted to connect the physical origin of the peak splitting with the two chemical
potentials and the tendency of the Kondo resonance to be pinned to a Fermi level.

To our knowledge up to now no precise prediction about the splitting of the Kondo

resonance in finite voltage has been made. tEu,].l_a.n.dJ.L&d.zl (IZ.0.0.EL |2.0.0.EI) find a splitting in

a 4th order perturbation expansion in the bare U, but their values for eV are rather large,

and it is not easy to compare to their results. Experimentally, it is difficult to access the
voltage dependence of the spectral density directly. De_Franceschi et all (IZ.0.0.d) claim to
have observed such a splitting in a three terminal experimental setup at voltages of the

order of the Kondo temperature. Thus the results are in qualitative agreement. If this
experimental setup actually corresponds to the two channel Anderson model is, however,
not completely clear.

In conclusion, we find in the non-equilibrium RPT scheme for strong coupling a split-
ting of the Kondo resonance when the voltage exceeds a critical eVi}, of the order of the
Kondo temperature. We know that the theory presented is asymptotically correct for small
voltage. If it is, however, quantitatively correct for voltages of the order of Tx is not clear.
It would be interesting to compare this quantitative prediction with other non-equilibrium
methods.

The quantity which is directly measured in most experiments is not the spectral density,
but the differential conductance dI/dV, [38). In figure we show the voltage depen-
dence of dI/dV calculated from the second order RPT (left) and the repeated scattering
series (right) for zero magnetic field.

We have included different contributions for comparison: the term with no non-equilibrium
voltage dependence (“No V-dep.”) corresponds to the evaluation based on the equilibrium
density of states as described in equation (E2)). The label “First term” refers to only the
first term in equation (E38)) including the voltage dependence of the renormalised self-
energy, whilst the thick lines (“Full expr.”) are calculated with the full expression (EZ38).
We can observe that in contrast to the spectral density no peak splitting can be observed
in the plots for the differential conductance. This is in line with all experimental results for
this quantity. We can also see that the width of the peak is reduced, when the finite voltage
is taken into account. This can be traced back to the increasing self-energy contributions
for finite voltage. It suggests that an experimental estimate of the Kondo temperature
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Figure 4.8: Different contributions to the differential conductance (in units of Gg) for the
second order calculation based on ([E29)) (left) and the repeated scattering diagrams, ([EZS),
(right). The meaning of the different contributions is explained in the text.

from the peak width in dI/dV is likely to give a too small value. In both approximations
(SO and ph-RPT) we see that for voltages of the order of Tk a shoulder develops in the
voltage dependent calculations, and this is seen more pronounced in the results for the full
expression ([L2)). This behaviour can be explained from the fact that the approximations
for the renormalised self-energies become inaccurate for these energy and voltage scales.

4.4.3 Dynamics and differential conductance in finite magnetic field

In this subsection we present results for the extension of the equilibrium RPT calculations
in section BL2 There we had seen that in a finite magnetic field the repeated scattering
results for the renormalised self-energy gave a correction to the free quasiparticles spectra
such that the resulting low energy spectra agreed well with NRG results. We had also
seen at the beginning of this chapter [cf. fig. EI] that the results for the differential
conductance based on equilibrium spectra gave a larger estimate of the Kondo splitting
in magnetic field as compared with experimental results. Further we found in section
that the inclusion of non-equilibrium effects resulted in a reduction of the peak position
in small magnetic field. It is therefore reasonable to test whether the extension of the
RPT calculation to the non-equilibrium case at higher magnetic fields gives results for
the differential conductance which compare well with experimental ones. In figure B0 we
show the differential conductance with the different contributions, as explained earlier, for
a finite field case, h = Tk.

We can see that the peak in dI/dV is split since the field exceeds the critical value h.. The
value of dI/dV at eV = 0 is reduced substantially as compared to the zero field case. By
comparing the dashed line with the full line we can also observe that the magnitude of the

peak splitting Aggﬁc&)&v in the voltage dependent expressions is reduced substantially when
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Figure 4.9: Left: Different contributions to the differential conductance (in units of Gy)
for the the repeated scattering diagrams for h = Tk. Right: Comparison of the imaginary
part of the renormalised self-energy as a function of voltage illustrating the non-equilibrium
effects for h = Tk.

compared with the result ([E2) corresponding to the equilibrium approximation (“No V-
dep.”) for the differential conductance. Such an effect had been observed for one component
of dI/dV in the asymptotic expansion in figure for a smaller field. To illustrate the
effect of the voltage dependence in the renormalised self-energy here we have included
a plot on the left of figure B where the imaginary part of S5 (w,eV) is shown as
dependent on the voltage like S5 (w = eV/2,eV'), which corresponds to the first term
in (E3R) and without the voltage dependence in the second argument, 5™ (w = eV//2,0).
It is visible that the imaginary part of the |S2™"(w = eV//2, V)| is larger, when the full
voltage dependence is included and thus the effect on the Kondo peak in the differential
conductance can be understood. The closer inspection reveals that the reduction in the
magnitude of the Kondo splitting in the non-equilibrium theory through the effect of finite
voltage is substantial, as seen for example in figure E9 but also for other values of the field

h. In fact the resulting values for A%gﬁ?&v give a Kondo splitting which is substantially

smaller than the experimental result Agzg()i’ov in figure EI (right). In other words the
non-equilibrium effects in the RPT calculation presented reduce the splitting too much
from the equilibrium approximation as to give an agreement with the experimental values.
At the time of writing it is not fully resolved why the ph-RPT approximation works well
in the equilibrium in fields up to about 47k (compared with NRG results), but does not
explain the quantum dot measurements in finite voltage of the same order of magnitude.
Generally, the non-equilibrium problem in finite field is clearly a difficult one since the non-
equilibrium spectral function for fields A, frequencies w and voltages eV, all of the order
of the Kondo temperature Tk, have to be determined. Future research on non-equilibrium

Kondo physics will show if an agreement between experimental and theoretical results
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for the differential conductance can be found, based on the equation (E3H), or if other

effects have to be considered. Promising approaches include non-equilibrium Bethe ansatz

calculations (INL&h.ta._a.n.d_A.ndL&i 2006) and reformulation of the non-equilibrium problem
).

in terms of scattering states M
In summary, we have analysed the transport through a quantum dot in magnetic field

in this chapter. The description is based on the two-channel AIM and a renormalised
perturbation theory in the Keldysh formalism. We derived an asymptotically exact ex-
pression for the low voltage behaviour of the renormalised self-energy and used it to study
the non-equilibrium effects on the differential conductance for a small magnetic field. We
also presented results for dynamic susceptibilities, spectral densities and the differential
conductance for higher voltages and fields (order of Tk). These were based on second
order and repeated scattering RPT. We established that the finite voltage plays an impor-
tant role in the problem, and attempted to give a quantitative interpretation of the Kondo
splitting observed experimentally in conductance measurements. Based on our calculation,
however, no quantitative agreement was found, and it remains to be seen in future research,
whether there are flaws in the calculation presented or additional features which have not
been taken into account in the present approach play a role.



The most important thing is to find out
what is the most important thing.
Shunryu Suzuki

Chapter 5

Locally correlated electrons in a
superconducting bath

The subject of this chapter is the AIM with a superconducting bath. We start by outlining
the NRG approach for this model, and introduce the basic features appearing, such as the
singlet-doublet ground state transition and the bound states in the gaps. Then we present
NRG results for the position and weight of the bound states, and also for the anomalous
expectation values focusing on the symmetric model first. This is followed by a discussion
of the spectral functions on all energy scales for different parameters. The last section is
devoted to the situation away from particle hole symmetry, where we give a global phase

diagram for parameter regimes with singlet and doublet ground states.

5.1 Kondo physics and BCS superconductors

So far in this part of the thesis we have studied the Anderson impurity model in a metallic
medium, focusing on the effect of a local symmetry breaking in the spin channel induced
by a magnetic field. In this section we will investigate a situation where a symmetry
breaking in the bath rather than on the impurity site is included. Specifically, we will look
at a symmetry breaking in the charge channel and study the case where the bath is in a
BCS superconducting state. This situation is of interest for understanding the effect of
magnetic impurities in superconductors and recent experiments with quantum dots with
superconducting leads. Due to the proximity effect there is induced symmetry breaking on
the impurity site. As a consequence localised excited state (LES) with an energy within the
superconducting gap can be induced at the impurity site. Such states are well known from
superconductor-normal-superconductor (SNS) junctions and are usually called Andreev
bound states. For a weak on-site interaction the ground state of the system is usually a
superconducting singlet (S = 0) and the LES is an S = 1/2 excitation. If there is a strong
repulsion on the impurity site, such that single occupation is favoured, we have a situation
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where a single spin is coupled to the superconducting medium. Similar to the case with a
normal, metallic bath the Kondo effect plays a role here. The ground state can be a singlet,
more specifically a Kondo singlet, when both the local interaction and the superconducting
gap are not too large. Physically, one can think of a situation where enough continuum
states are available to screen the impurity spin. If the local interaction is, however, in-
creased beyond a critical value U, the ground state becomes a doublet (S = 1/2) with an
unscreened spin at the impurity site. In this situation the LES is an .S = 0 excitation. This
ground state transition at zero temperature is an example of a quantum phase transition

(achied h995). Tho
relevant energy scales for this singlet-doublet transition to occur in the Kondo re%ime are

which occurs for a level crossing that depends on a system parameter

the Kondo temperature Tk and the superconducting gap Ag.. In early work by

) the effects of impurities on superconductors in an interpolation theory were studied.
For a single impurity it was found that the singlet-doublet transition occurs at 4Tk =~ mAqc
(m/4 ~ 0.78). There have also been NRG studies for a spin coupled to a superconducting
bath (Kondo model) by Satori et all (I]_Q_E).d) and subsequent work by Sakai et all (I]_9_9_Ei)
In this work a more accurate estimate for the transition is given, Tk /Ag ~ 0.3, i.e. for
Tk /Asc > 0.3 we have a singlet ground state whilst for Tk /Ag. < 0.3 the ground state is
a doublet. It is also found there that at the transition, Tk /Ag. ~ 0.3, where the bound
state energy of the LES becomes zero. (IZ_O_Od) presented another

NRG study, for the Anderson impurity model with superconducting bath, where a larger
parameter space is accessible. A more extensive comparison with mean field results is given

there and the behaviour of the LES is analysed in detail. Many of the more recent papers

(IB.th.knLa.n.d_A.r_omsI |].£19.d |Ma.hsu.m.o.td |2110J] hlacm.o_e.t_a.].] |2110ﬂ Siana and Egge |2ﬂ.0_4‘
IQh.OJ.&t.ﬁ.l]IZ.0.0é‘ IQgJ.II_I_&t_a.].Hzﬂ.Oé‘ ) (theoretically), m_d_a.ar_at_a,]_”zﬂﬂd Iya.n_[la.m_at_a.].]

) (experimentally) focus on the impurity (quantum dot) embedded in two supercon-

ducting baths with different (complex) superconducting order parameters. There a phase
shift dependent Josephson current can be observed which varies with the model param-
eters. Situations with two channels with Josephson or nonequilibrium currents are not
covered in this chapter. The analysis presented here focuses on the spectral properties of
an impurity in a superconducting bath. For low energies within the superconducting gap
we calculate the position and weight of the LES and also give the values for the induced
anomalous on-site correlation. We also present results for the spectral density for the diag-
onal and offdiagonal correlations functions on all energy scales and present singlet-doublet
ground state phase diagrams for the symmetric and non-symmetric case. We start by out-
lining some of the details for the NRG calculation with a superconducting medium. Many

aspects discussed in this chapter are published in reference tB.a.u.er_e_t_a.].] (IZ.0.0_ZH)
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5.2 The Anderson model with superconducting medium

5.2.1 NRG approach

Starting point is the Anderson impurity model in the form
H = Hq+ Hpyix + Hee. (51)

The local interacting part is given as before in equation ([LT) and also the mixing term has

the usual form,

Hyixe = Y Vieleh, ,¢4 +hoc2). (5.2)
k,o

In order to avoid confusion in the notation with the superconducting gap we define for this
chapter T' = 7V 2p.(0) as the energy scale for hybridisation (p.(0) = 1/2D as before). The

superconducting medium is given in a BCS meanfield form

Hee=) 5kcL,ack,a — Bsc [CL,TCTfk,l +hel, (5.3)
k,o k

where Ag. is the superconducting gap, which is taken to be real for simplicity. In (B3]) we let
the summations run over all k in a wide band. Another energy scale wp, the Debye cutoff in
BCS theory, could enter at this stage to restrict the summation. As shown bym
) with a scaling argument, this effect does not alter the results substantially. We will
keep it in mind for some of the following arguments, but neglect it later (see below).

For the NRG approach we have to derive a discrete form of the Hamiltonian, which can
be diagonalised conveniently in a renormalisation group scheme descending to lower ener-
gies. This is done in an analogous fashion as for a metallic medium, which was described
in section 11 Essentially, there are three steps which only affect Hpix and Hg:

(1) Mapping to a one-dimensional problem, (2) logarithmic discretisation, (3) Basis trans-
formation. We obtain finally [cf. (ZI)]

Hoia/ D =) > Ul + e, (5.4

and
H/D—i (fiof +hc>—A8°§j<f*f* +h.c) (5.5)
sc = 0’7n+1 noJn+l,0 -G D nldn,| oo :
o,n= n=mo

where 7, has the usual form (Im @) my corresponds to the site on the chain, at
which the energy scale has reached wp, and it is explicitly given by

_log(wp/D)

o= log A

(5.6)
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We follow earlier works (IS.aJ;.oLl_et_a.].] I].9.9.d, Yoshioka and_Ohashi |2.0.0.d) and restrict our

calculations to the case mg = 0, which corresponds to wp = D. As mentioned above details
about the justification for this in the NRG approach have been discussed by
(1905,

The iterative diagonalisation scheme is set up in the same way as in the normal case.
Due to the anomalous term in the superconducting band the charge @ is not a good
quantum number of the system any longer, i.e. the charge operator does not commute with
the Hamiltonian. Thus eigenstates are characterised only in terms of the spin quantum
number S. The numerical RG transformation is defined by

Hyi1 = R(HN) = VAHN + &y 1 (Flofnrohe) = Avar (Fluy Sl +he) ,

N>mg
(5.7)
with £} as in chapter 2 and
AWN=D2AL for N >
Ay = or = (5.8)
0 otherwise.

We can see that the superconducting gap becomes a dominating energy scale for large NV
and a relevant perturbation. It does not make sense to continue NRG iterations down
to energies much below this scale as there are no continuum states anymore in the gap.
Therefore, we stop the NRG procedure at an Npax, such that the typical energy scale
A~ (Wmax=1)/2 §5 not too much smaller than the sulﬁducting gap Ag.. More details for

).

the iterative diagonalisation are given elsewhere (|

5.2.2 Relevant Green’s functions

For the Green’s functions it is convenient to work in Nambu space, Cl = (CLT,CCM), with
2 x 2 matrices. The relevant retarded Green’s functions are then

W) — .oty — <<Cd,T3C;rl,T>>w «Cd,TSCd,l»w _ Gi1(w) Gra(w)
Cal) = (G Cal <<c2,l;c2,T>>w <<c2,l;cd,l>>w> <G21<w> G22<w>>' (59)

In the NRG approach we calculate G1; and Go; directly and infer Gy (w) = —G11(—w)*,
which follows from G5t (w) = —G% (—w) and Gy 5" (w) = —G'4/o" (—w)* for fermionic
operators A, B. Similarly, we can find G12(w) = Ga1(—w)*. In the derivation one has to
be careful and include a sign change for up down spin interchange in the corresponding
operator combination.

In the non-interacting case we can work out the Green’s function matrix exactly. To do

so rewrite the term Hg. by introducing the vector of operators and the symmetric matrix

—A

Coi=|( ®1 |, Ap=[ °F < ) (5.10)
cf —-A —£
—k,| sc k
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Then Hg. can be written as

Hye =Y CJACh.
k

The matrix Green’s function in the superconducting lead is then given by gk(iwn) =
(Z‘(.Un]lg - Ak)ilu
Qk(iwn)_l = iwn]12 — ERT3 + Asc7_17 (511)

where 7; are Pauli matrices. Note that for a three component vector b

1o

(G/]lg‘i‘b'T)il = m

(aleg —b-T), (5.12)

and hence '
twp 1o + ERT3 — Asc'7—1

(iwn)? — (e} + AL)

In the wide band limit with a constant density of states the hybridisation term takes the

g, (iwn) = (5.13)

form A
1 wp 1o + AgeT
2 . ni2 sc’1l
— E n) = —I—————. .14
v N - gk(zw ) E(zwn) (5.14)

We are mostly interested in the limit of zero temperature (iw, — w € R) here, and the
function in the denominator F(z) after analytic continuation reads

—isgn(w)y/w? — A2, for |w| > Ay
E = 5.15
) { VAZ — w? for |w| < Age (5.15)
In the non-interacting case for T' = 0, we have therefore
=wly — r——— Nl
Gy(w) wly —eq73 + E(@) (5.16)
The Green’s function is obtained by matrix inversion, which yields with (BT2)
1 r TA
0 sc
—— |w(1 —) 1y — ——%¢ , 1
Gi) = 57 (14 5y ) 12— Ty +oem (517)
where the determinant, D(w) := det(GY(w)™!) is given by
I 12 T2AZ
D(w) = w1 | -5 —e 1
(w) w + E(w) E(w)2 €4 (5 8)

The full Green’s function matrix G4(w)~! at the impurity site is given by the Dyson matrix
equation

Gy(w) ! =Gyl (w) = Z(w), (5.19)

where we have introduced the self-energy matrix X(w).
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Self-energy using the higher F-Green’s function

As described earlier in chapter 2 there is a method to calculate the self-energy employing a
higher F-Green’s function, and it can also be used for the superconducting case. In order
to derive the equations of motions for the correlation functions, the identity

w({4; B)w + ([H, A], B)w = ([A; Bly) (5.20)

(n = + for fermions) is useful. The calculation taking into account all offdiagonal terms
yields the following matrix equation

Gy (W)Gy(w) —UE(w) = 1, (5.21)

with the matrix of higher Green’s functions F'(w)

i

N Fn(w) Flg(w)
F(w) = ( Fouw) Fiaw) > : (5.22)

We have introduced the matrix elements Fi1(w) = (¢, 1ny; CIl,T»w Fia(w) = {cqinpicy Do
Fy(w) = _«C;rl,lnT;CILT»W and Fy(w) = _<<CII,1nTSCd,1>>w- In the NRG we calculate Fy;
and Fy; and the others follow from Fis(w) = —Fb (—w)* and Fh(w) = Fi1(—w)*. We can
define the self-energy matrix by

S(w) = UE(W)Ga(w) ™" (5.23)

The properties of the Green’s function and the higher F-Green’s function lead to the
relations Y1o(w) = Yo1(—w)* and Ygg(w) = —311(—w)* for the self-energies. We can
therefore calculate the diagonal self-energy ¥(w) = ¥1;(w) and the offdiagonal self-energy
»off (W) = Y91 (w) and deduce the other two matrix elements from them. With the relation
(EZ3) between G, F and X the Dyson equation is recovered in (E221]),

Gulw) ™ = Gt (w) — Z(w). (5.24)

Therefore, the Green’s function can be calculated from the free Green’s function as given

in (BI7) and the self-energy as calculated from (Jﬁ[i:i! . Details for the matrix elements for

the actual calculation are given elsewhere ).

5.2.3 Andreev bound states

The denominator of the Green’s function in equation (EI9) can vanish inside the gap
lw| < Age. As the imaginary part of the self-energy is zero in the gap this leads to
excitations with infinite lifetime there. They correspond to the localised excited states
(LES) or Andreev bound states. For the non-interacting case they are determined by the

equation D(w) = 0 [cf. eq. (T3],

2w?T
Bl = 0. (5.25)

w? —e3—T?+
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This is an equation in w?, thus if Eg is a solution so is —Eg. In general, in the interacting
case we have to analyse the equation

[w—sd—F%—E(w)] [w+5d+%+2(—w)*] - [E(Aw) —2o(w)] [E(Aw) —EOH(—w)*]( - o).
5.26

Once the self-energies are calculated it is possible to solve this equation iteratively. We
will develop a simplified description by using an approximate form of the self-energy. First
note that in the gap, |w| < Age, ImE(w) = Im¥°F(w) = 0. We expand the real part of the
diagonal self-energy ¥(w) to first order around w = 0, which is motivated by the Fermi
liquid expansions for the normal case and the numerical results for the behaviour in this
regime. The offdiagonal self-energy is approximated by the real constant X°%(0), as it
does not vary much for small w. This approximation for the self-energy is easy to justify
if the gap is small parameter, such that it only covers small values of w, but also works
reasonably well for larger gap parameters. Hence, we find instead of (B226]) the equation
0 [w? + AgezXT(0)]

2 ~2 2 25 off 2

where renormalised parameters &; = z[eg + (0)] and I' = 2T" were introduced. As usual
2=t =1—3%'(0). The form of the equations (E25) and ([E27) is very similar and both can
be easily solved numerically to give the bound state solutions w = E}' = aE}, a = £. Due
to the offdiagonal self-energy term X°%(0) a simple interpretation of the interacting theory
based on using renormalised parameters £g4, I in equation (EZ3) for the non-interacting
theory is, however, not possible.

Based on the same idea we can give approximate expressions for the weights of the
bound states wy by expanding the diagonal part of the Green’s function around w = Ej'.
We can write the Green’s function in the gap near the bound states w ~ £ F as

— +
w w
G(w) = b + b : 5.28
@) w—E; +1in w—Elf—i-in ( )
Using the above approximation for the self-energy the weights are found to be
E(E)(1+asd)+T
W = ZB(By)? (B + o) (5.29)

2 E(E,)%(E(Ep) + 28) + D(E} + Ae2Z07(0))

In a more sophisticated approximation one could consider an expansion of the self-energies
around the bound state energies Ej rather than w = 0. Various things can be seen from
the expression (BZ4)). First we note that in the particle hole symmetric case, &4 = 0,
w,f = w, = wp. As the weights are proportional to the renormalisation factor z they are
expected to decrease with increasing interaction U. One can also easily see that for bound
states close to the gap, |Ep| — Ay, the weights go to zero, wj' — 0.

A useful limit to obtain analytical results is to consider the case where the supercon-
ducting gap is a large parameter, Ag. — 00 (Ilem_et_a.]J |20_0_4) Then one can show that




90 Locally correlated electrons in a superconducting bath

the problem essentially reduces to a localised model with an anomalous on-site term which
is of the order of the hybridisation I". We will write it in the form

U 2
Ha =Y &ulch o= 1) = Tleyely +hel+ 5 (Dnao—1),  (5:30)

where £; = 4 + U/2. Without interaction this Hamiltonian can be diagonalised by a
Bogoliubov transformation and the excitation energies Fy = ,/53 +I'? are found, which
usually lie in the gap as I' < A4 as assumed initially. This gives a direct picture of the
emergence of the Andreev bound states for large Ag..

We can discuss the ground state crossover from the singlet to the doublet state in terms
of the single site Hamiltonian (B30). First note that the S = 1/2 (doublet) states, | T) and
| 1), are eigenstates of (B30) with energy 0. The S = 0 singlet states, empty site |0) and
doubly occupied site| T]), are not eigenstates of (B30). However, the linear combinations
in the BCS-form,

V1) = ud0) +vd T1),  [¥2) = vd0) —ud T1), (5.31)

are eigenstates with eigenvalues By = —FE; + U/2 and Ey = E4 + U/2, respectively. The
coefficients ug, vq are given by

uﬁ:%(urﬁ), v§:1(1—5—d>. (5.32)
The ground-state is therefore a singlet as long as E; < 0 and a doublet otherwise. The
condition 4 =0 or ) ,

% + % = i (5.33)
defines therefore the phase boundary for the transition. It is a semicircle in the (£4/U)-
(I'/U)-plane with radius 1/2, which is shown in figure EEITl How this phase boundary
looks like for finite gap Ag. will be investigated later in section B0, when we look at the
situation away from particle hole symmetry. In the case of particle hole symmetry £; =0
and the condition reduces to I' = U/2.

Having established the most important relations we will in the next section present
results for behaviour of the bound state in the symmetric AIM with superconducting bath

with a finite gap parameter.

5.3 Bound state behaviour for the symmetric model

The position and weight of the Andreev bound states in the gap can be calculated from
the NRG routine for spectral functions as the lowest spectral excitation (SE). The bound
states correspond to a single excitation with energy Ef = +Ey, |Ep| < Age, and carry a
certain weight wy. In figure B1l we show the bound state energies +F} for a series of values
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of the on-site interaction U and different values for the gap in the medium Ay.. Here and
in the following we take a fixed value for the hybridisation, 7' = 0.2. All quantities can
be thought of as being scaled by half the band width D = 1.
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Figure 5.1: Bound state energies Ej (left) and weights wy (right) for various U/7I" and
Age. Both quantities have been scaled by the corresponding value of Ag.

We can see that in the non-interacting case the bound state energy for the cases with
small gap (Ag = 0.001,0.01) is very close to £A. and decreases to zero with increasing
interaction. For a critical value U, the nature of the ground-state changes from a singlet
(S =0) to a doublet (S = 1/2) and at this point E, = 0. For this transition we can think
of the positive Egr and negative solution E,~ for the bound states as crossing at w = 0.

If the the interaction is increased further, Elﬂ becomes finite again and increases with
U. The larger the gap A the smaller critical value U, for this ground state transition
becomes. In the case where Ag is of the order of I' - as can be seen for the case Ag. = 0.06
- the bound state energy FEj lies within the gap, detached from the continuum part at Ay,
already for the non-interacting case, but otherwise shows a similar behaviour as described
above.

On the right hand side of figure Bl the weight wy of these bound states is plotted.
We have marked the position U, of the singlet-doublet crossover point by a symbol on
the x-axis. The two curves for a value of the gap Agc = 0.001 and Ay = 0.01 have a
maximum for some intermediate value of U which is smaller than the critical U, for the
ground state transition. For the other curve (Agc = 0.06) the weight is maximal for the
non-interacting case. In all cases the weight becomes very small for large U. Note that
we plot the weight scaled by the gap, wy/Agc, and therefore the absolute values are larger
for the cases with larger superconducting gap. At the singlet-doublet transition we can
see discontinuous behaviour as the weight changes sharply. This is a feature of the zero
temperature calculation, where the matrix elements change their values when the levels
cross on increasing U, such that the nature of the ground state changes. It will be seen
for the anomalous correlations as well. For finite temperature this discontinuity becomes
smooth.
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In the last section we discussed how the bound state energy, which so far we have
deduced from the spectral excitations (SE), could also be calculated from the bound state
equation (BE) (B226]). The latter was derived by expanding the self-energy to first order.
It involves the renormalised parameters &g, I and the constant value of the offdiagonal
self-energy ¥°%(0). In figure we compare the bound state energies calculated by these
two methods for two values of the gap Ag. = 0.005 (left) and Ay = 0.06 (right).

+Eb / Asc (SE)
-o- Eb / Asc (BE)

+Eb / Asc (SE)
-©- Eb ! Asc (BE)

0.5¢

-0.5+

3 3
u/nr u/nr
Figure 5.2: Bound state energies Ej as calculated from the spectral excitations (SE) and

from the bound state equation (BE) (28]) with renormalised parameters for Ag. = 0.005
(left) and for Agc = 0.06 (right) for various U/xT.

We can see that for values of U < U, the agreement is excellent in both cases. However,
when U > U, we find less accurate values with the method based on bound state equation
(BE) with renormalised parameters. Since the method to calculate the bound state energy
from the spectral excitations (SE) is very accurate there must be some problem with the
BE method. The closer inspection of the numerical results for the diagonal and off-diagonal
self-energies reveals that the linear and constant approximation made to derive the bound
state equation with renormalised parameters (E26]) becomes less valid for U > U.,.

In the last section we also derived an expression (.29 for the weights wy of the bound
states in the gap. It can be expressed in terms of the renormalised parameters &g, T, the
offdiagonal self-energy %°F(0) and the bound states energy Ej. In figure we compare
the weights calculated from the spectral excitations (SE) with the ones from the bound
state equation (BE) analysis with renormalised parameters. We show the results for the
same parameters Ag. = 0.005 (left) and Ag. = 0.06 (right). We can see for both cases
that the overall behaviour of the weights as a function of U is described reasonably well
by equation (B29)). It is, however, clearly visible that the agreement is between the SE
and BE values is much better in the singlet regime for U < U,. This is similar as observed
for the values of the bound states energies Ej in figure B2 and the reason for this is the
same. The discontinuity for the weight is not reproduced by the approximation based on
equation ([B29). As can be seen from that equation this would require a sudden change
in the self-energy as function of U, which was not found with sufficient accuracy in the
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Figure 5.3: Weights w;, for the Andreev bound states as calculated from the spectral

excitations (SE) and from the equation (B29) with renormalised parameters for Ay =
0.005 (left) and for Ag. = 0.06 (right) for various U/nT.

present calculation. This can partly be attributed to the broadening procedure involved
and to the inaccuracies when calculating the numerical derivative.

The anomalous expectation value (d;d)) is an indicator for the strength of the proximity
effect of the superconducting medium at the impurity site and quantifies the induced on-
site superconducting correlations. In the following figure B4 we show the dependence of
(drd}) on the interaction U/xI for the same values of Ay as in figure Il The values are
scaled by the gap Agc.
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Figure 5.4: Left: Anomalous expectation values as a function of U/#T" for various Ag.. The
values are scaled by the gap Ag.. Right: Phase diagram for singlet and doublet ground-
state as a function of Ag./7I' and U/nI. The dotted line corresponds to U/I" = 2, which
gives the singlet doublet transition for Ag. — oco. The dashed line gives the transition as
Tk /Age ~ 0.3 with Tk given in equation (B34).

We see that as a general trend (djd|) decreases for increasing on-site interaction. This is
expected since the superconducting correlations are suppressed by the repulsive interaction.
We have marked the ground state transition with a symbol on the z-axis, and we see that
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(dyd}) changes discontinuously in magnitude and sign there. The sign change is due to a
phase change of 7 of the local order parameter which occurs at the transition as discussed

in reference IB.a.].a.I]s.k.;Let_aJJ (IZ_O_O_d) It is characteristic for this zero temperature quantum

phase transition. At finite temperature this behaviour becomes continuous. In the situation

of infinite gap in the medium, as discussed above, at the transition point (dyd|) drops to
zero for the singlet ground state.

On the right hand side of figure b2l we present a phase diagram for singlet and doublet
state for the symmetric model. For small U the ground state is always a singlet. It can
become a doublet when U /7T is increased. The critical U, for the transition decreases with
increasing value of the gap Ag. as can be seen in the diagram. In the limit Ag. — o0, the
critical interaction is given by U./nI' = 2/7, which is shown with a dotted vertical line in
the figure. As mentioned earlier there have been estimates of the boundary between singlet

and doublet in the strong coupling regime (IS.aI_on_et_a.].] I]_9_9_2i IXQsh.LQ.ka_a.n_dﬁh.a.s.hj |2_0_0d

as Tk /Asc ~ 0.3. In this case the Kondo temperature is given as by

) (eq. 3.9),
/8T
Tk = 0.182U ﬁe*’TU/SF. (5.34)

We have added a dashed line representing this result which agrees with the ones presented

here in the strong coupling regime, but starts to deviate for smaller values of U. In the limit
Age — 0 the ground-state is a singlet for any value of U as the Kondo effect always leads
to a screened impurity spin in a singlet formation. For finite gap the nature of the singlet
ground state can differ depending on the magnitude of U. We expect a “superconducting
singlet” for small U and a Kondo singlet for larger U. We will comment on this again at
the end of the next section.

5.4 Spectral functions

In this section we present results for the behaviour of the spectral functions. The diagonal
and offdiagonal Green’s function can be calculated directly from the Lehman representation
as illustrated in chapter 2 and we use the method based on the Anders-Schiller basis. As
in this procedure the excitations for the spectral peaks in the Green’s function have to be
broadened, it is difficult like this to obtain a sharp spectral gap at |w| = Ag.. We can,
however, determine the self-energy components from the Green’s function and the higher
F-Green’s function [cf. eq. (B2Z3))] as explained earlier. We use the exact expression for the
non-interacting Green’s function GY(w) in equation (EIT), which includes a sharp spectral
gap, and the Dyson matrix equation (B224)) to calculate the diagonal and offdiagonal Green’s
function. This is the way the Green’s function are calculated for the region outside the
gap, |w| > Asc. Inside the gap, |w| < Ay, we have extracted the delta-function peaks for
the Andreev bound states energies Ej, and weights w;, from the NRG excitation data for
the Green’s function. The delta-functions are represented by an arrow. Altogether the
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diagonal spectral function p(w) = —ImG(w)/7 can then be written in the form
p(w) = Z wbé(w - El?) + Pcont (W), (535)
a=%

where peont(w) is the continuum part for |w| > Age.

In figure we show the resulting spectral function (B30 for Ag. = 0.005 for the
diagonal Green’s function at the impurity site for a number of different values of U. As
before 71" = 0.2 throughout the section.
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Figure 5.5: The spectral density p(w) for various values of U for the whole energy regime
(left) and the region in the gap (right); Asc = 0.005.

In the plot on the left hand side we give the spectrum over the full energy range. One
can see the development of the atomic limit peaks at £U/2 as the interaction is increased,
and also the beginning of the formation of a Kondo resonance at low frequencies. As U
increases the Kondo resonance becomes narrower, its formation, however, is suppressed,
since in the gap region the continuum part of the spectrum vanishes. In the gap there are
only the delta function contributions from the Andreev bound states. These are shown
in an enlarged plot in figure on the right, where the arrows give the position of the
bound state Eg[ and their height indicates the spectral weight wy. It can be seen that the
position of the bound state changes when we increase the interaction. The weight first
increases and then decreases as a function of U, which corresponds to the features which
was discussed explicitly in the last section in figure BIl Note that the largest value of
U shown, is greater than the critical U, for the singlet-doublet transition (U./7[" ~ 3.2).
In the high energy spectrum there is no significant change to be seen in the behaviour,
however at low energies we observe the crossing of the bound state energies at w = 0 at
U..

The offdiagonal part of the spectrum p°f(w) = —ImG°® (w)/7 has a similar general form
as the diagonal part,

P°M(w) =Y wfd(w — By) + pofk (w), (5.36)
a=-%
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Figure 5.6: The spectral density p°f (w) for various values of U for the whole energy regime

(left) and the region in the gap (right); Asc = 0.005.

where the weights wj’ can have positive and negative values. For half filling the spectrum
P
for Agc = 0.005 for the offdiagonal Green’s function at the impurity site for a number

w) is an asymmetric function of w. In figure Bl we show the spectral function (36

of different values of U. In the plot on the left hand side we can see the behaviour for
the continuum part outside the gap. Notice that the frequency range only extends up to
w = £0.1. We can see a peak close to w = +Ag., which is suppressed for larger U and
changes sign towards the singlet-doublet transition. The behaviour of the bound state
peaks in the offdiagonal spectrum is displayed on the right hand side of the figure. We can
see similar features as observed before in the diagonal part, i.e. the weight first increases
with U and then decreases. If we follow the excitations with the weight of the same sign
we can see, that at the singlet-doublet transition the bound state levels cross at w = 0.
In figure B1 we show the diagonal spectral function for a larger gap Ag. = 0.02 for the
diagonal Green’s function at the impurity site for a number of different values of U.
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Figure 5.7: The spectral density p(w) for various values of U for the whole energy regime
(left) and the region in the gap (right); Asc = 0.02.

The overall picture on the left is similar to the case in figure with the smaller gap. Due
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to the larger gap the formation of the central Kondo resonance is completely suppressed,
but the high energy spectrum is as before. From the behaviour within the gap (right side
in figure B7) we can see that the bound state position E,jt goes to zero for smaller U than
in the case Ag. = 0.005, and hence the ground state transition occurs for smaller U, for
the larger gap (U./nT" ~ 2.03). This was discussed in the last section. For the values of U
shown the spectral weight of the bound states w; decreases with increasing U. Note that
the weights wy, of the peaks in the gap have been scaled differently in figures and B
so that their height should not be compared directly.

The spectral function of the offdiagonal Green’s function at the impurity site (E30]) for
this value of the gap, Ag. = 0.02, is shown in figure for a number of different values of
U.
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Figure 5.8: The spectral density pOff(w) for various values of U for the whole energy regime
(left) and the region in the gap (right); Asc = 0.02.

For larger frequencies outside of the gap (left) we can see a peak near w = Ag., whose
height is reduced due to the larger interaction. At larger frequencies we find that the tails
develop a broad peak for larger values of U. This has not been observed in the case with
the smaller gap shown in figure Also a sign change of the low energy peak can be
observed as before. The behaviour near and in the gap (right) can be understood as before
for the bound states, where in this case we have two bound states for the singlet ground
state and two for the doublet ground state.

We have analysed the transition from a singlet to a doublet ground state in detail in the
spectral excitations. Within the parameter regime for the singlet ground state there are two
possibilities for the nature of the ground state. It can be a singlet corresponding to an s-
wave pair like in the wave function given in equation (E31]), which is a superposition of zero
and double occupation. This is the natural singlet ground state for a BCS superconductor.
In the strong coupling regime U/xT" > 2 we can, however, also have a screened local spin,
i.e. a Kondo singlet. The wave function has a different form then and consists rather of a
singly occupied impurity state coupled to the spins of the medium as many-body singlet.
In our NRG calculations it is not easy to distinguish these different natures of the singlet



98 Locally correlated electrons in a superconducting bath

ground states. We can, however, get an indication for what is favoured from the two
particle response functions in the spin and in the charge channel. In figure we show
the imaginary part of the dynamic charge and spin susceptibility, x.(w) [cf. eq. (CZ3)]
and ys(w) [cf. eq. (CZ)], for Agc = 0.005 and a series of values for the interaction U.
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Figure 5.9: The imaginary part of the dynamic charge (left) and spin (right) susceptibility
various values of U and Ag. = 0.005. The scale on both axes is the same such that the

results can be compared well.

We can see that the peaks in the charge susceptibility exceed the ones in the spin suscep-
tibility for zero and weak interaction indicating the dominance of the symmetry breaking
in the charge channel, and a ground state of superconducting singlet nature. However,
for U/nT" > 1 the spin susceptibility develops large and narrow peaks at low frequency.
This signals the importance of the spin fluctuations and low energy spin excitations and
indicates a ground states of a screened spin. In contrast the decreasing peaks in the charge
susceptibility for large U represent the effect of suppressing the superconducting on-site

correlations.

5.5 Away from particle hole symmetry

So far we have considered the situation at particle-hole symmetry, ¢4 = —U/2. In this
section we will briefly discuss a few aspects that change in the situation away from particle
hole symmetry. Let us consider the case where for a given gap Ag., on-site interaction U,
and hybridisation I', the ground-state of the system is a doublet at half filling, £; = 0.
When &; is increased, we find that a transition to a singlet state can occur at a certain
value . Similar to the cases shown for the symmetric model the ground state change is
accompanied by vanishing energy of the bound state Ejp. This is illustrated in the following
figure BET0l where we have plotted the bound state energy Ej for fixed Ag. = 0.01, two
values of U/nI" = 3,5 and a series of values of the on-site energy scaled by U, &;/U. As
before we have 7I" = 0.2.

The critical interaction for the ground state transition for this case at half filling is U, /7T ~
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Figure 5.10: The dependence of the bound state energies Ej (left) and weights w; (right)
on &;/U for Asc = 0.01 and U/nT" = 3,5.

o 0.1

2.6, such that both cases are have a doublet ground state for £, = 0. We can see that
with increasing asymmetry &; the bound state energy |Ejp| first decreases towards zero
and then increases again in the singlet regime for g > £J. As in the symmetric case the
singlet-doublet transition is accompanied by |E,| — 0. The weights for these bound states
are shown on the right hand side of figure BI0l Away from particle hole symmetry the
weight ng for the positive energy Egr and w, the one for the negative bound state E,  are
not equal, as was already visible in equation (29). We can see that the weights wg[ start
to assume different values when &, is increased from 0. At the ground state transition the
values change discontinously similar as observed in the half filled case. If we follow the both
the positive weight w;r and the negative w, separately the weights cross at the transition
point. If, however, we think of the bound states as crossing at zero, i.e. w;r — w, at the
transition, a more direct connection can be deduced from the results shown. In the singlet
phase there is a maximum for both the positive and the negative bound state weight, more
pronounced for w;.

Also in the asymmetric case it is possible to calculate the bound state position Ej
from equation (B27) and the weights from equation (B229) employing the renormalised
parameters. We abstain from showing explicit plots here, but note that the results resemble
figures and in the respect that they give good agreement in the singlet regime, but
deviations for parameters where the ground state is a doublet.

In the following figure BIT] (left) we show the dependence of the anomalous expectation
value (dyd|) on the asymmetry scaled by the interaction £;/U for the same value of Ay
as in figure BI0 The values for (d;d}) are scaled by the gap Ag. For the values of U
shown, at half filling the system has a doublet ground state and (d;d|) is negative. First
it does not vary much when &; is increased, but at the transition to the singlet ground
state we find, as in the half filled case, a jump to a positive value and (d;d|) increases to
a saturation value on further increasing £;. This value is smaller for larger U, similar to
what has been found in the symmetric case.
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Figure 5.11: Left: Anomalous expectation values for various U/7I" and Ag. = 0.01. Right:
Phase diagram showing the regions for singlet and doublet ground state as dependent on
I'/U and &;/U for different values of the gap Ag.. The full semicircular line corresponds
to the phase boundary for Ay, = oo as discussed in equation (B33]).

On the right hand side of figure BIT] we present a global phase diagram of parameter
regimes for singlet and doublet ground states for the non-symmetric case. This representa-
tion in the I'/U-£;/U-plane is motivated by the result for the phase boundary for the case
Age — oo derived in equation ([B33). The corresponding semicircle is shown in the figure
accompanied by the phase boundaries for finite values of the gap Ag.. Note that the line
on the z-axis, to which the phase boundary is be contracted in the limit I' — 0 or U — o0,
possess a doublet ground state for |£4| /U < 1/2.

In summary, we have discussed the behaviour of an interacting impurity site in a
medium with symmetry breaking in the charge channel. This situation is motivated by the
situation of magnetic impurities in superconductors and nanoscale quantum dot systems
with superconducting leads. As an additional parameter, the magnitude of the gap Ay
enters the problem. The low energy spectrum is dominated by the gap, and we saw that
the lowest excitations in these cases are Andreev bound states within the gap region,
which change position and weight according to the other parameters. These have been
analysed in detail in both the symmetric and the asymmetric model. We have shown that
a renormalised parameter description for the position of the weights of the bound states is
possible. We have presented spectral functions for both the low energy regime and the full
frequency range. The behaviour of the ground state, which can be a singlet or doublet, is
summarised in the two phase diagrams in figures B4 and BTT1
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Everything should be as simple as it
18, but not simpler.
Albert Einstein

Chapter 6

The Hubbard model in magnetic field

In the third part of this thesis we study correlated electrons in the lattice model subject
to a certain symmetry breaking. In this chapter we describe the response of the interact-
ing electrons to a homogeneous magnetic field. We first briefly describe the DMFT-NRG
formalism with magnetic symmetry breaking and explain how the field dependent renor-
malised parameter and RPT description from chapter 3 can be generalised. Then we
present results for different parameter regimes at half filling and away from half filling.

6.1 Magnetic states in the Hubbard model

The Hubbard model ([CZ9) had originally been proposed to study magnetic ordering and
ferromagnetism, based on an a microscopic theory of itinerant correlated electrons. Mean
field theory, indeed, predicts spontaneous magnetic order in the Hubbard model when the
Stoner criterion

poler)U > 1 (6.1)

is satisfied. More careful studies have revealed, however, that it is not so easy to find a ferro-
magnetic ground state in the Hubbard model and corresponding region of the parameters in

the ﬁhase diagram is not so large i i I].9.8.d, von_der Linden and Edwards

) [for a review see )]. The criterion (EJ]) although not accurate gives the

right tendency for the onset of magnetism, i.e. large U and large density of states at the
Fermi level. A rigorous result for ferromagnetic ordering by Nagankg (IE)E) for infinite U

and one hole exist, but it has not been easy to extend this result

). A more recent DMFT study found ferromagnetism for very large U and moder-
ate doping (IZILZ].&L&L&]J |2.0_O.d . It has also be found in flat band models with an infinite
density of states (IM IE)

dinary DOS and at smaller values U, say of order of the bandwidth, is that the tendency

). One reason that ferromagnetism is not found for an or-

to antiferromagnetic ordering by the induced by the inter-site spin coupling J, (L31), is
dominant. Antiferromagnetic ordering is discussed in the next chapter.
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In this chapter, rather than studying spontaneous ferromagnetic ordering we want to
focus on the paramagnetic response of the correlated lattice electrons towards an external
magnetic field. We have seen for the impurity model in section that the susceptibility
towards the exposure to a magnetic field increases with the degree of correlation and similar
effects will be found here. We also saw there that the corresponding quasiparticle behaviour
could be characterised in terms of field dependent renormalised parameters. In this section
we want to extend these methods to the study of the effect of a magnetic field on the lattice
system of correlated electrons. We will find quite distinct behaviour depending on the on-
site interaction U. The extreme limits can easily be understood without any calculation.
In the non-interacting limit, we deal with a free Fermi gas and only have to consider the
competition of the magnetic field energy of order h with the kinetic energy which is of order
of the hopping t. The system therefore only shows a strong polarisation when h 2 ¢, which
- as t is of the order of electron volts - in practice is a very large field. In the limit of very
strong local interaction, U — oo, the situation is completely different. In the half filled
case every site is singly occupied and thus possess a local moment as charge fluctuations
are completely frozen. These uncoupled spins, polarise completely even for a very small
field and thus the susceptibility of the system diverges in the zero temperature limit (Curie
law). The intermediate regime between these extreme limits is more interesting, but needs
a more careful consideration, which is carried out here in the DMFT framework.

To study the Hubbard model with an induced magnetic symmetry breaking is not
only of interest for theoretical reasons. A number of materials, such as heavy fermions,
vanadium oxide, liquid *He can be understood as a strongly correlated Fermi liquid and
their response to a magnetic field has been investigated in great detail. For instance,
phenomena like field and spin dependent effective masses and metamagnetic behaviour
have been observed experimentally in several heavy fermion compounds (I.A.Q.k.l_et_a.].] I].9.9.d,

Goadrich et all 1999, Manekar et all 2000, Dardevic et all 2006). The Hubbard model,

however, being a one band model is not an appropriate starting point to make a quanti-

tative comparison with the heavy fermion class of materials. A periodic Anderson model
with a two band structure and including the degeneracy of the f electrons would be a better
model to describe these materials. Field dependent effects in this model have been studied

by several techniques, modified perturbation theory i |2.0.0J.|), exact di-

agonalisation (IS.a.sg_and_].t_o_l:“]_Q_B_d), 1/N expansion ) and variational approach

6.2 Setup for the DMFT with a magnetic field symmetry
breaking

We consider the Hubbard model (C29)) in a magnetic field,

H=— Z(tijcj,acj,a + h.C.) - Z Ponic +U Z (R (6_2)
0 7

27]10-
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where p, = p + oh with the field A as introduced earlier and the chemical potential
. We will treat (E2) in the DMFT approximation and due to the symmetry breaking
term all relevant quantities introduced in section now become spin dependent. The
generalisation of the equations in section is, however, completely straightforward. The
effective Weiss field g&;(f) carries a spin index, and equation (7Tl generalises to two
equations for each spin component,

Goo(w) = GP(w) ™ + Zo(w), (6.3)

which form the two self-consistency equations for the approach. Once the spin dependent
self-energy ¥, (w) is obtained in the effective impurity problem the local lattice Green’s
function G'°°(w) can be calculated from

Gloe(w) = ;Gk,a(w) = /dsw+uafi°§3(w) — (6.4)

where pg(e) is the density of states for the non-interacting model (U = 0). GI°°(w) can be
identified with the Green’s function G,(w) of an effective AIM, by re-expressing g&;(w)

as
g&;(w) =w+ pio — Ko (w), (6.5)
such that )
GO‘ = 5 6.6
() w—¢ege — Ko(w) — Eg(w) (6.6)
with €4, = —p,. The dynamical mean field K,(w), describing the effective medium

surrounding the impurity, is also spin dependent now. As illustrated in section quite
generally, starting from an initial form for K, (w), ¥,(w) is calculated using an appropriate
impurity solver from which G'°°(w) can be calculated using equation ). A new result
for K,(w) is then obtained from equations ([&3)) and (3]). This K, (w) serves as an input
for the effective impurity problem and the process is repeated until it converges to give a
self-consistent solution. As impurity solver we use the NRG in this thesis, which is most
accurate for calculations at 7' = 0 and for the low energy excitations. There has been a
DMFT study of the static properties of a half-filled Hubbard model in a magnetic field

using the exact diagonalisation (ED) method by [Lalowx et all (I].9.9£‘)

The density of states pg(e) of the non-interacting infinite dimensional model here is

chosen as the semi-elliptical form corresponding to a Bethe lattice (73)
p0(€) = —o3v/ D — (& + o)’ (6.7)
where 2D is the band width, with D = 2t for the Hubbard model, and g the chemical
potential of the free electrons. We choose this form, rather than the Gaussian density of
states of the hypercubic lattice, as it has a definite finite bandwidth.
Before considering in detail the methods of solving these equations, we look at the form

of these equations in the low energy regime, where we can give them an interpretation in
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terms of renormalised quasiparticles. We assume that we can expand X, (w) in powers of
w for small w, and retain terms to first order in w only. Substituting this expansion into
the equation for the local Green’s function gives

o/ po(e/%s)
G (w) = zg/ds w+ﬂ0,:+0(w2) —, (6.8)

where
f0.0 = 20 (e — X6(0)), and z, = 1/[1 — X (0)]. (6.9)

We have assumed the Luttinger result that the imaginary part of the self-energy vanishes
atw=20 (m M) As the Green’s function in equation (E8) has the same form of
that of the non-interacting system, apart from the weight factor z,, we can use it to define

a free quasiparticle propagator, C;’%)Of,(w),

Gls (w) :/ds _role/z) (6.10)

w+ﬂ070-_5

We then interpret z, as the quasiparticle weight. We will refer to pp,(w) derived from
this Green’s function via pg (w) = —ImGp ,(w +id)/7 as the free quasiparticle density of
states (DOS). For the Bethe lattice (&), the quasiparticle DOS takes the form of a band

with renormalised parameters,

2

= _ N2 _ ~ 2
po,a<w>—ﬂf)g¢a, (w + fig )2 (6.11)

where D, = z,D. We can also define a quasiparticle occupation number 7 by integrating
this density of states up to the Fermi level,

7o = /dw 0.0 (w). (6.12)

It is possible to relate this free quasiparticle occupation number A0 to the expectation value
of the occupation number n, in the interacting system at 1" = 0. Using the quasiparticle
density of states in equation (GITl), we can rewrite equation (EI2)) as

(e o]

70 = / de po(e)0(tts — T (0) — ), (6.13)

—00

where pp(e) as given in equation (B7)). Then assuming a generalisation of Luttinger’s
theorem ) for each spin component, the right-hand side of equation (EI3))

is equal to n,. We then have the result,

0 = n,, (6.14)
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that the occupation for electrons of spin o is equal to the number of free quasiparticle
of spin o, as calculated from equation (EIZ). It should be noted that there is no simple
generalisation of the h = 0 DMFT result (IKQJ.Ler_et_a.].] IZQ.OA), o = p — 3(0), in the

spin polarised case to po o, = po + oh = py — X5(0). The latter would imply the same

occupation number for each spin species of free electrons and interacting electrons in a
magnetic field, and thus identical magnetisation. Since, however, non-interacting electrons
are less susceptible to a magnetic field, this is obviously wrong.

To evaluate the renormalised parameters, z, and pg ., which specify the form of the
quasiparticle DOS, we use two different methods. The first method is a direct one, where
we use the NRG determined self-energy ¥,(w) and the chemical potential u,, and then
substitute into equation (B3] for z, and fip ;. The second method is indirect, and makes no
reference to the self-energy. It is based on the quasiparticle interpretation of the NRG low
energy fixed point of the effective impurity. It is analogous to what has been done for the
impurity model in chapter 3, and the details are given in appendix [Bl In such an approach
we have K,(w) = |V,|*go.s(w), where go,(w) is the one-electron Green’s function for the
first site of the isolated conduction electron chain. As earlier, we expand the self-energy
Yo (w) to first order in w, and then substitute the result into equation (E0l). We can define
a free quasiparticle propagator, C;’o,g(w), for the impurity site as

1

W — €~d,a - |‘70'|290,0'(W)

Goo(w) = : (6.15)
where
éd,a = ZJ(Ed,U + EO’(O))a “70’2 = ZU‘V(;’Z, (616)

In the DMFT approach we identify é’oya(w) with the local quasiparticle Green’s function
for the lattice ([EI0),
G5 (w) = Goo(w), (6.17)

which specifies the form of gy ,(w) in (EIH) and yields fig, = —€4,. The quasiparticle
weight 2, is then obtained from the relation z, = ]VU/VJ\Q in equation (6TH), and fig»
from fig s = —E€4,0-

As an extension of the RPT considerations in chapter 3 we can also calculate the local
dynamic spin susceptibilities, xioc(w) = > g X(w, k). We focus on the transverse part x;(w)
for this model, which can be also obtained from a similar equation to (B336]). The details are

described in Bauer and Hewsorl (IZQ_OZH) We can calculate the local on-site quasiparticle

interaction U as in the impurity case, but we do not have the simple formula, relating U to

x¢(0) that enabled us to deduce the irreducible quasiparticle interactions Uy; the impurity
formula we used earlier is only valid in the wide band limit. To determine Uy in the lattice
case we use the condition that Rex;(w) fits the NRG result at the single point w = 0. We
can then compare the results based on these RPT formulae, which take into account the
repeated quasiparticle scattering, with the NRG results over the whole frequency range.

An analogous procedure applies for x;(w) (IB_aJ_mr_and_HmMs_Q_d |2_0_0_7_t])
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6.3 Results at Half-filling

We present results at half-filling for three main parameters regimes where we find qual-

itatively different behaviour (ILa.]_QJ_].X_&t_a.]J I]_9_9_é‘) The results in all cases will be for a
Bethe lattice with a band width W = 2D = 4, such that £ = 1 sets the energy scale. In
concentrating on the field induced polarisation, we do not include the possibility of anti-

ferromagnetic ordering. The regimes are a relatively weak coupling regime (a) where U
is smaller than the band width, an intermediate coupling regime (b) with W < U < Uy,
where U, is the value at which a Mott-Hubbard gap develops in the absence of a magnetic
field |U, ~ 5.88, Im (@)], and (c) a strong coupling regime with U > U..

6.3.1 Weakly correlated regime

The first plot in figure (left) gives the spectral densities for the majority spin electrons
pt(w) for various magnetic field values in the weakly correlated regime, U = 2.

0.35¢ i i \ ; . . 15
0.31
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Figure 6.1: Left: The local spectral density for the majority spin pj(w) for U = 2 and
various fields h. Right: The inverse of the quasiparticle weight z,(h) calculated from the
impurity fixed point (FP) and directly from the self-energy and the magnetisation m(h)
also for U = 2.

We can see clearly that, for increasing magnetic field, more and more spectral weight is
shifted to lower energies (the opposite happens for the other spin component, which is
not displayed here). Above h ~ 1.0 the system is completely polarised, 2m = 1. This
extreme high field limit corresponds to an insulator; there is a gap of the magnitude
Ag(h) = 2h + U — W between the upper (minority) and lower (majority) band, which
both have the semi-elliptical form as for the non-interacting system with W = 4, as can be
seen already in (left) for h = 0.9. The inverse of the quasiparticle weight z,(h), which
in the DMFT corresponds to the enhancement of the effective mass m¥(h) = m/z,(h),
is shown as a function of h in figure (right). We calculated the values of z,(h) using
the two methods described earlier, i.e. directly from the numerical derivative of the NRG
self-energy at w = 0 and from the impurity fixed point (FP) (see appendix [B]), where
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zs = |V /Vs|?. At half filling we have z;(h) = z(h) and we have plotted the average of
the values for 0 = T and o = |, which is compared for the two methods. The deviation for
the values for the different spins is only due to small numerically inaccuracies and is less
than 2%. The method based on analysing the excitation of the impurity fixed point (FP)
is only applicable in the metallic regime, when the system is not completely polarised.
The values of z,(h) increase from about 0.75 to 1, which corresponds to a progressive
“de-renormalisation” of the quasiparticles with increasing field, as observed earlier for the
impurity model in section Since the interaction term in the Hubbard model acts only
for opposite spins it is clear that there is no renormalisation when the system is completely
polarised with one band fully occupied and the other empty. We have also calculated, but
do not display the expectation value of the double occupancy (nyn|). It is found that it
decreases with increasing field, which further illustrates why the interaction term becomes

less important for larger fields.
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Figure 6.2: Left: The renormalised chemical potential fig ,(h) calculated from the impurity
fixed point (FP) and directly from the self-energy for U = 2 and various fields h. Right:
The magnetisation in the mean field approximation compared with the DMFT result for

U = 2 and for the full range of magnetic fields h.

We can also follow the field dependence of the renormalised chemical potential fig ,(h)
as shown in figure (left). It is shown deduced from the renormalised parameter (RP)
€40 and as calculated directly from the self-energy. The agreement is very good over the
full range of magnetic fields. Mean field theory is valid for very weak interactions, so we
compare our results for fip ,(h) for U = 2, with the mean field value ﬂg}f, =pu+oh—Un™
in figure (left). The results coincide for h = 0, when ﬂg}f, = 0 and when the system
becomes fully polarised at large field values, ﬂg}f, = —0o(U/2 4 h), but in general ﬂ{ff, >
fio.o(h). We also compare the mean field (MF) result for the field dependence of the
magnetisation m(h) with the one obtained in the DMFT calculation in figure (right).
The general behaviour is similar, but the mean field theory without quantum fluctuations

overestimates the magnetisation, as one would expect.
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6.3.2 Intermediate coupling regime

In the next plot in figure B3 (left), where U = 5, we show typical behaviour of the majority
spin density of states in the intermediate coupling regime.
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Figure 6.3: Left: The local spectral density for the majority spin pj(w) for U = 5 and

various fields h. Right: The inverse of the quasiparticle weight z,(h) calculated from the
impurity fixed point (FP) and directly from the self-energy also for U = 5. The inset shows

the magnetisation m(h).

Similar to the weak coupling regime, we find a shift of spectral weight towards lower energy
for the majority spin. There is, however, a difference in the way this happens due to the
initial three peak structure, namely the quasiparticle peak in the middle gets narrower for
increasing field and finally vanishes in the polarised phase. This gives rise to metamagnetic
behaviour in this parameter regime. The quasiparticle weight, which is shown in figure B3
(right), reflects this behaviour by decreasing to zero with increasing field signalling heavy
quasiparticles. Here, as in the weak coupling case, we plot the average of the spin up and
down results for each method. The deviations can be larger here, especially close to the
metamagnetic transition. When the material is polarised the z,(h) reverts to 1, which
corresponds to the band insulator as before. This approach to the fully polarised localised
state in high fields contrasts with that found in the weak coupling regime.

To illustrate further this different response to a magnetic field, the real part of the local
longitudinal dynamic spin susceptibility x;(w,h) as a function of w is shown for various
values of h in figure (left). Tt can be seen that the local susceptibility x'°¢(h) =
Re x;(0,R) in this regime increases with h so that 9x'°¢(h)/0h > 0. Such a feature can
also be seen in the curvature of the magnetisation shown in the inset of figure (right).
This is behaviour characteristic of a metamagnetic transition and related to the magnetic
field induced metal-insulator transition.

We can also check the Luttinger theorem in a magnetic field (EId), as discussed in the
previous section, by comparing the values of 70, deduced from integrating the quasiparticle
density of states with the value of n, calculated from the direct NRG evaluation in the



6.3 Results at Half-filling 111

N
.v‘

.

‘ ‘ ‘ a4
6f ; —h=0 1 -
] —h=0.1
5l ’ ---h=0.1751 0.8l
==-h=0.2
4+ i
_ H 0.6/
] H
1t ol
Sy 02
Opommmimimimim o SR :: S Nk
u

ba 0.2 0 0.2 0.4 % 0.05 0.1 ) 0.15 0.2

w
Figure 6.4: Left: The real part of the local longitudinal dynamic spin susceptibility for
U = 5 and various fields h. Right: The comparison of the spin dependent occupation

numbers 70 and n, corresponding to Luttinger’s theorem in a magnetic field (EI4) also
for U = 5.

ground state. These results are shown in figure (right). It can be seen that there is
excellent agreement between the results of these two different calculations, 7l = n,, so
that Luttinger’s theorem is satisfied for all values of the magnetic field in this intermediate
coupling regime.

Having deduced the renormalised parameters of the quasiparticles from the NRG re-
sults, we are now in a position to test how well we can describe the low energy dynamics
of this model in a magnetic field in terms of a renormalised perturbation theory. It is of
interest first of all to see how the free quasiparticle density of states pp »(w) from equation
(ETT) multiplied by z,(h) compares with the low energy spectral density p,(w). In figure
6.7 we make a comparison in the zero magnetic field case for U = 5.

We see that the quasiparticle band gives a good representation of the low energy peak in
po(w) and, as expected, does not reproduce the high energy features. These, however, to
a fair approximation can be described by the mean field solution py¢(w) weighted with a
factor 1 — z, as can be seen in figure (left). A case with a finite magnetic field h = 0.15,
where the peaks in the density of states of the two spin species are shifted due to the
induced polarisation relative to the Fermi level, is shown in figure (right). The figure
focuses on the region at the Fermi level and one can see the the free quasiparticle density
of states describes well the form of p,(w) in the immediate vicinity of the Fermi level.
It is to be expected that the frequency range for this agreement can be extended if self-
energy corrections are included in the quasiparticle density of states using the renormalised
perturbation theory as shown in chapter 3 in the impurity case.

We now compare the NRG results for the transverse local dynamic spin susceptibilities
for the same value U = 5 and a similar range of magnetic field values with those based on
the RPT formula as explained at the end of section[£2 In figure [E6] we show the imaginary
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Figure 6.5: Left: The free quasiparticle density of states po,(w) in comparison with in-

teracting local spectral density for U = 5 and h = 0. We have also plotted a thin black
line for pys(w) = [po(w + U/2) + po(w — U/2)]/2 which describes the non-magnetic mean
field solution and weighted with 1 — z,. Right: The free quasiparticle density of states in
comparison with interacting the local spectral density for U = 5 and h = 0.15.

part of the transverse spin susceptibility calculated with the two different methods.
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Figure 6.6: A comparison of the imaginary parts of the transverse dynamic spin suscep-
tibility for U = 5 and h = 0.0 (left) and h = 0.15 (right) calculated using renormalised
perturbation theory (RPT, full line) and from a direct NRG calculation (dashed line).

It can be seen that the RPT formula gives the overall form of the NRG results, and precisely
fits the gradient of the NRG curve at w = 0. Some of the relatively small differences between
the results might be attributed to the broadening factor used in the NRG results which
gives a slower fall off with w in the higher frequency range, and a slightly reduced peak.
We get similar good agreement between the two sets of results for the same quantity for
the case with a magnetic field h = 0.15, shown in figure (right).

In figure B, where we give both the real and imaginary parts of the transverse sus-
ceptibility for h = 0.19, we see that this overall agreement is maintained in the large field
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regime where we get metamagnetic behaviour. The shapes of the low energy peaks for both
quantities are well reproduced by the RPT formulae. Note that the peak in the real part is
not at w = 0, so it is not fixed by the condition that determines (7}, but nevertheless is in
good agreement with the NRG results. Due to their very small values it becomes difficult
to calculate z,(h) as the system approaches localisation for larger fields. In this regime as
25(h) — 0 the free quasiparticle density of states will converge to a delta-function. Self-
energy corrections to the free quasiparticle propagators will become increasing important
as this limit is approached. Once the system has localised and is completely polarised,
however, we find that the values fi, (2,(h) = 1) deduced from the self-energy give a quasi-
particle density of states coinciding with the DMFT-NRG result of an upper and lower

semi-circular bands.

6.3.3 Strong coupling regime

Finally we consider the strong coupling regime with U > U,, where for h = 0 the spectral
density has a Mott-Hubbard gap so that for half-filling the system is an insulator [see
dashed line in fig. (right)]. The electrons will be localised with free magnetic moments
coupled by an effective antiferromagnetic exchange J ~ t2/U as in ([CI0). In fields such
that h > J, the system polarises completely as can be seen in figure (right), where we
show the total density of states p(w) = p1(w) + p|(w) for h =0 and h =0.2.
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Figure 6.7: Left: Plots of the imaginary part of the transverse dynamic spin susceptibility
for U =5 and h = 0.19. Right: The total local spectral density p(w) for U = 6 for h = 0
(dashed line), Mott insulator, and h = 0.2 (full line), fully polarised band insulator.

For smaller fields, such that A < J, we do not find a convergent solution to the DMFT
equations, and the iterations oscillate between local states which are either completely full
or empty. We interpret this as due to the tendency to antiferromagnetic order which in a
weak field, due to the absence of anisotropy, will be almost perpendicular to the applied
field in the z-y plane with a slight canting of the spins in the z-direction (spin flopped



114 The Hubbard model in magnetic field

phase). In this calculation no allowance has been made for this type of ordering, but this
state can be well described using an effective Heisenberg model for the localised moments.

6.4 Results away from half filling

6.4.1 Quarter Filled Case

We now compare the results in the intermediate coupling regime with U = 5 at half-filling
with those at quarter filling, x = 0.5, where the Fermi level falls in the lower Hubbard peak
in the spectral density. To see how the band changes with increasing magnetic field we
plot the density of states for both spin types in figure 8], for the majority spin electrons

(left) and for the minority spin electrons (right), for various values of the magnetic field.
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Figure 6.8: The local spectral density for the majority spin p;(w) (left) and for the minority
spin p|(w) (right) for U = 5, = 0.5 and various fields h. The dotted vertical line marks

the position of the Fermi level.

In the majority spin case (left) the lower peak gains spectral weight on the low energy
side and the weight in the upper peaks decreases with increase of the field. The opposite
features can be seen in the minority spin case (right), with the spectral weight in the lower
peak below the Fermi level decreasing and the weight in the upper peak increasing. Thus
the increase of spectral weight below the Fermi level for the majority spin electrons, and
the decrease for the minority spin electrons, can be seen to be due to a change of band
shape rather than a simple relative shift of the two bands, which would be the case in
mean field theory. In the fully polarised state there are no minority states below the Fermi
level and the upper peak in the majority state density of states has disappeared. Note
that the magnetic field necessary for polarisation hpe is more than twice as large this case,
hpot ~ 0.4, as in the half filled case, where hpq ~ 0.2.

The corresponding values for the inverse of the quasiparticle weight 1/z,(h) are shown

in figure (left) for a range of fields.
As noted in the impurity case, the quasiparticle weights differ for the two spin types with
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Figure 6.9: The inverse of the quasiparticle weight z,(h) calculated from the impurity
fixed point (FP) and directly from the self-energy for U = 5, x = 0.5 (left) and for U = 6,
x = 0.95 (right) for various fields h. The magnetisation m(h) is also displayed.

z1(h) > z|(h). The values of z,(h) have been calculated, as described earlier, both from
the energy levels (RP) and from a numerical derivative of the NRG derived self-energy.
There is reasonable agreement between the two sets of results, and the small differences
to be seen be attributed to the uncertainty due to the broadening in the numerical deriva-
tive of the NRG self-energy. As in the impurity case without particle hole symmetry

(IB.mmr.a.n.d.H.m&s.oﬂIZ0.0leJ

z1(h) increases monotonically. Note that z (k) does not revert to one in the polarised case

), there is an initial decrease of z|(h) with increase of h, whereas

as an additional down spin electrons just above the Fermi level interacts with the other up
polarised electrons. This will be seen even more pronounced in the case near half filling
discussed below. The field dependence of the magnetisation is also shown in figure B3l
and is similar to the half-filled case with a weak interaction (U = 2). We have calculated,
but do not show, the corresponding occupation values for 7 which again agree well with
the values of n,, verifying Luttinger’s theorem.

Our conclusion from these results, and from calculations with other values of inter-
mediate and large U, is that when there is significant doping, the behaviour in the field
corresponds to a weakly correlated Fermi liquid, very similar to that at half-filling in the
weak interaction regime. The only remarkable difference in the field is the spin dependence

of the effective masses as shown in figure [0 which is also found similarly in the impurity

case (IB.a.u.er_a.n.d_H&ﬂMsoﬂ |20.01€l)

6.4.2 Near half filling

Very close to half-filling and for large values of U we have a qualitatively different parameter
regime. Here the system is metallic but we can expect strong correlation effects when U
is of the order or greater than U,, due to the much reduced phase space for quasiparticle
scattering. We look at the case with 5% hole doping from half-filling and a value U = 6,
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which is just greater than the critical value for the metal-insulator transition. In figure
[E10 we show the spectral density of states for both the majority (left) and minority (right)
spins states and various values of the magnetic field.
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Figure 6.10: The local spectral density for the majority spin pj(w) (left) and the minority
spin p|(w) (right) for U = 6, x = 0.95 and various fields h.

There is a clear sharp quasiparticle peak for h = 0 at the Fermi level at the top of the
lower Hubbard band. As in the quarter filling case with U = 5 we see a similar transfer
of spectral weight with increasing field to below the Fermi level for the majority spin case,
and above the Fermi level for the minority spins. For large fields, h > 0.26, when the
system is completely polarised there is still a sharp narrow peak in the spectral density
of the minority spin states (right) above the Fermi level, though the spectrum for the
majority states (left) below the Fermi level is that of the non-interacting system. A spin
up electron added above the Fermi level feels no interaction as the system is completely
spin up polarised so these electrons see the non-interacting density of states. On the other
hand a spin down electron above the Fermi level interacts strongly with the sea of up spin
electrons. The self-energy due to scattering with particle-hole pairs in the sea creates a
distinct resonance in the down spin density of states just above the Fermi level. Just such

a resonance was predicted by Iﬂar;tz_a.n.d_EdﬂaLd.EI (I]_E)_Zd) for a Hubbard model in a strong
ferromagnetic (fully polarised) state.

The field dependence of the inverse of the quasiparticle weight is presented in the
earlier figure (right). Again we find reasonable agreement between the two methods
of calculation for these quantities. The magnetisation as a function of h is shown as an
inset in the same figure. The behaviour of z;(h) and z|(h) as a function of h contrasts
sharply with the behaviour found for the metallic state at half-filling with U = 5 shown
in figure (right). Notice comparing with figure that for zero field the quasiparticle
weight has a very similar value in both cases. At half-filling the tendency of the magnetic
field to induce localisation resulted in values of z;!(h) (z1(h) = z|(h)) which increase
sharply as a function of h. In the 5% doped case with U = 6, the system remains metallic
and the inverse quasiparticles weights, zT_l(h) and zl_l(h), both decrease in large fields
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though their values differ significantly. The quasiparticle weight for the minority spin
electrons decreases initially with increase of h, whereas that for the majority spins z;(h)
increases monotonically and quite dramatically with h. For a field h = hy, when the
system becomes fully polarised the up spin electrons become essentially non-interacting,
21 (hpol) = 1, whereas there is a strong renormalisation for a down spin electron and we
find in this case z|(hpo1) =~ 0.15. The interpretation for this is as given in the previous
paragraph for the spectral densities. For very large fields, h > hyo, also the minority
renormalisation factor z|(h) tends to one.

In figure (left) we compare the free quasiparticle DOS z,pp o (w) with the full one
po(w) for the fully polarised case (hpo = 0.26) near half filling, x = 0.95, U = 6. Note that
the parameters, fig, and z,, used in pg,(w) are purely derived from the NRG self-energy
in this case.
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Figure 6.11: Left: The free quasiparticle density of states in comparison with interacting

local spectral density for U = 6, x = 0.95 and h = 0.26. Right: The real and imaginary
parts of the transverse dynamic spin susceptibility (upper panel) and of the longitudinal
dynamic spin susceptibility (lower panel) for U = 6, z = 0.95 and h = 0.15.

We can see that the different values for the field dependent quasiparticle weight for up and
down spin z,(h) lead to remarkably different quasiparticle band shapes. With 2y (hpo) ~ 1
the majority spin quasiparticle band is essentially that of the non-interacting density of
states. The very much smaller value z|(hpo1) leads to a narrow quasiparticle band above
the Fermi level. The low energy flank of this quasiparticle band describes well the narrow
peak seen in the spectral density just above the Fermi level. To describe these strong
asymmetries in the spectral densities near half filling, we need z; > 2|, which contrasts
with the cases at half filling such as in figures (right) where always z; = z|. This
suggests a discontinuous behaviour of the renormalisation factors z, as a function of doping
on the approach to half filling.

Also for this case we display results for the real and imaginary part for the transverse
susceptibility for a field of h = 0.15, shown in figure (right). The low energy features
are seen on an w-scale an order of magnitude smaller than that for quarter filling due to
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the much stronger renormalisation effects in this regime. There is excellent agreement both
with the peak positions and shapes between the NRG and RPT results for both quanti-
ties. More examples of how the dynamic (transverse and longitudinal part) susceptibility

compares to NRG results can be found in reference ).

We conclude that already a small doping of the system is enough to maintain a metallic
character even for very strong interaction. Although the zero field spectra of the half filled
case for U = 5 and the small doping case with U = 6 display very similar zero field
behaviour, i.e. a strongly renormalised quasiparticle band with similar z,, no field induced
localisation transition occurs for finite doping and no metamagnetic behaviour is observed
in the latter case.

To summarise, in this chapter we have used the DMFT-NRG method to calculate
the spectral densities for one-particle and two-particle response functions for the infinite
dimensional Hubbard model in a magnetic field, for the qualitatively different filling regimes

and interaction strengths. The results extend earlier calculations of ].9.9_4‘)
using the ED method, which were restricted to the case of half-filling. The results are
on the whole consistent with this earlier work, except in the insulating regime for weak
fields, where we could not find a convergent solution of the DMFT equations. We have
also extended the method for calculating the field dependent quasiparticle parameters
(chapter 3) to infinite dimensional lattice models where the self-energy, as in the impurity
case, is a function of frequency only. Using the field dependent renormalised parameters
2y(h) and fig (k) in the RPT formulae for the dynamic transverse spin susceptibilities we
found agreement with the overall features to be seen in the DMFT-NRG results for these
quantities. In all metallic parameter regimes a spin dependent Luttinger theorem in the
form n, = 2, the number of particles equals the number of quasiparticles, was found to
be satisfied for all strengths of the magnetic field.

Well away from half filling we find a magnetic response similar to the weakly correlated
case even for large values of U. The large phase space for quasiparticle scattering in
this regime leads to modest renormalisation effects. Here, as in the impurity case, we
find spin dependent quasiparticle weights, z1(h) # z (k). This implies spin dependent
as well as field dependent effective masses, which have been discussed earlier in work by

IS_pa.}_ek_a.n_dﬁQpa.].aﬂ (I]_9_9_d), IKQLb_e_]_et_aJJ (IJ_Q_Q_EJ) and [RisehorougH (IZO_O_d) A qualitative

comparison with the results there can be found in ).




Wie sich Verdienst und Glick verketten,
Das fillt den Toren niemals ein,
Wenn sie den Stein der Weisen hdatten,
Der Weise mangelte dem Stein.

Johann W. von Goethe

Chapter 7

Renormalised quasiparticles in
metallic Antiferromagnets

In this chapter we discuss spontaneous antiferromagnetic order in the Hubbard model.
We focus on the case away from half filling. First we discuss the general situation and the
phase diagram, before explaining the details necessary for the DMFT-NRG approach. This
is followed by a detailed analysis of the quasiparticle parameters, which are obtained with
two different methods. Finally we discuss local and k-resolved spectral functions and give
a detailed analysis of the renormalised quasiparticle excitations including their effective

mass and spectral weight.

7.1 Antiferromagnetic order in the Hubbard model

In the last section we analysed the behaviour of the Hubbard model subject to a homo-
geneous magnetic field and we saw qualitatively different responses in certain regimes for
the interaction U and the doping §. We did not find a spontaneously broken symmetry
state, i.e. a ferromagnetic ordered state, in the parameter space under consideration. A
more natural symmetry breaking than the ferromagnetic ordering for the Hubbard model
is the antiferromagnetic ground state. The easiest way to see this is to consider large U
and half-filling, where the model can be mapped to a Heisenberg model of antiferromag-
netically coupled spins on a lattice. The spin coupling term was given in equation ([C3T)
and the coupling constant is J = 4¢2/U. With (I3) as an effective model we can directly
see the antiferromagnetic ordering tendency in the limit of large U. Also for small values of
the interaction, where mean field theory is valid, one finds an antiferromagnetic solution.
In fact it is generally accepted at present that for § = 0 and finite U the ground state of
the Hubbard model with a bipartite lattice is antiferromagnetically ordered. The situation
can be compared with the formally analogous situation in a superconductor (cf. mapping
in section [CZ2), where any finite attraction leads to an instability of the Fermi sea. We
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will deal with this situation in more detail in the next chapter. An extensive study by
Zitzler et all (IZ.O.Qd) used the DMFT-NRG method to describe the antiferromagnetic so-
lutions and phase separation in the Hubbard model. The results presented here are in

agreement with these earlier predictions, but this study has a different emphasis as will be
explained below.

Anticipating some of the results of this chapter we show a global antiferromagnetic/para-
magnetic phase diagram as a function of the doping ¢ and the on-site interaction U in figure
[[T It has been obtained with DMFT-NRG calculation. The value of the corresponding
sublattice magnetisation m 4 is shown in a false colour plot. We have added a dashed line
separating the spontaneously ordered and paramagnetic regimes.
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Figure 7.1: Left: Phase diagram showing the doping and the U dependence of the sublattice
magnetisation m4 as deduced from the DMFT-NRG calculations. Right: Schematic plot
of an antiferromagnetically ordered state with a few additional holes.

At half filling (0 = 0 axis) the spontaneous magnetisation increases with U. We can see that
the antiferromagnetic order from the half filled case persists when holes are added. The
value of the critical doping . at which the antiferromagnetism disappears depends on the
on-site interaction U. We expect that for small U the critical doping . will increase with
U since a tendency to order only appears when an on-site interaction is present. From the
mapping to the t — J model we also expect that for large U the antiferromagnetic coupling
J decreases and therefore the order is destroyed more easily. The values of U are, however,
not large enough to display this trend.

If we compare these results with the phase diagram given by IZu.tZ].e_r_e_t_a.]J (IZ.0.0.d) we
see that they are in very good agreement. In their case the antiferromagnetic region was

mapped out to values of U ~ 4.5. A picture illustrating the antiferromagnetic lattice in a
Neéel state (arrows symbolise electrons with certain spin direction) and some added holes
is shown in figure [[1] (right). It is a two-dimensional 5 x 5 cluster with 4 holes, hence
0 = 0.16 which corresponds to the maximal values we have found for the critical doping &..
The picture is reminiscent of numerous numerical studies for cluster of this size with exact

diagonalisation and Quantum Monte Carlo (for a review see m (@) and references
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therein).

Here in this chapter, we focus on the metallic antiferromagnetism, the doped state with
long range antiferromagnetic order. Our interest is to examine how well the low energy
excitations in this ordered state can be described in terms of renormalised quasiparticles.
Since the motion of a hole in an antiferromagnetic lattice is accompanied with the gen-
eration of spin excitations [see schematic picture in figure [l (right)] its mobility will be
inhibited and the effective mass enhanced. Due to a similar effect for charge carrier cou-
pling to lattice phonons with the corresponding quasiparticle excitations called polarons,
the quasiparticle excitations are sometimes referred to as magnetic polarons. Here, we will
mainly refer to them with the generic term of renormalised quasiparticles. To tackle this
problem of studying the nature of this renormalised quasiparticle excitations in the system
with spontaneous antiferromagnetic symmetry breaking, we use the infinite dimensional
Hubbard model and the DMFT-NRG approach.

7.2 General setup and DMFT approach

In considering the response of the Hubbard model ([CZ9) to a staggered magnetic field
and antiferromagnetic order, we take the case of a bipartite lattice, which consists of two
sublattices A and B such that the nearest neighbours of a site in the A sublattice are on
the B sublattice and vice versa. The Hamiltonian for the Hubbard model can be written

in the form,

H,=- Z(tijcl,i,acB,j,J +h.c.) — Z(/‘UCL,@UCA,LJ + ,u,gcjrgﬂ.yacB’i’J) + UZ Nei, 1 Mevsi, |
’i,j,U 7;70' ’i,Oé

(7.1)

where the hopping matrix element is taken as t¢;; = ¢ between nearest sites 7 and j only,

and zero otherwise, and a = A, B. A staggered field H’

(7.2)

i — H for i € A sublattice
| —H foriec B sublattice

has been included so that ji; = pu+ oh. The non-interacting part of the Hamiltonian Hg ,
can be diagonalised in terms of Bloch states and then expressed in the form,

Hou=>_Cl My ,Ch, (7.3)
k,o

where C);’J = (cz’k’g,c};’k’g), and the matrix My, is given by

Mpo=| "M & . (7.4)
€k —H-0o

The k sums run over a reduced Brillouin zone as we have doubled the Wigner-Seitz cell

in position space including two lattice sites. The free Green’s function matrix Q%va(w) is
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given by (w — M,,)~!. The poles of the free Green’s function give the elementary single
particle excitations, which are given by

ER (U =0) = —po(h) £ \/h? + 3, (7.5)

where po(h) is the chemical potential of the noninteracting system in a staggered field.
This illustrates that the electronic excitations are split into two sub-bands for a finite
staggered field.

Notice that we have adopted a special choice of basis {CA,k,a’ chkva} here m
I].9.9.d, IZILZ].E'.L&L&].”Z.O_O.d) Another common basis to study antiferromagnetic and spin den-

}, where qq is the reciprocal lattice

sity wave symmetry (SDW) breaking is {cy, ;, ¢ q0.0

vector for commensurate SDW ordering. The bases can be related by a linear transforma-

Ck+qo,0 v2\1 1 ¢Bk,o

For the latter basis the matrix My, would be diagonal in the kinetic energy term and

tion,

the symmetry breaking is offdiagonal. For our study in the DMFT framework the A — B-
sublattice basis is, however, more convenient and we will use it throughout the rest of this
chapter. It is possible, of course, to relate the quantities obtained with the help of ([Zfl) to
the {¢g ;s oy g0} Pasis.

We can generalise the equations to the interacting problem by introducing a self-energy
Ya,ko(w), so that the matrix Green’s function can be written in the form

Gho(w) ! 2<<B”“"’(w) Tk ) (7.7)

B CA ko (W)(B ko (W) — €, —€k Cak,o(w)

where (o ko(w) = w+ tg — Yo ko(w). As we are dealing with the infinite dimensional
limit of the model, we take the self-energy to be local so we can drop the k index. This
is the reason why the self-energy has a single site index « = A, B and no offdiagonal
terms appear in equation (7). The symmetry of the bipartite lattice gives ¥p ,(w) =
Y4 -o(w) =X_;(w) and hence

CB,fo'(w) = CA,J(W) = Co‘(w))

where we have simplified the notation. To determine these quantities ¥, (w) it is sufficient
to focus on the A sublattice only. Summing the first component in the Green’s function in
equation (7)) over k we obtain the Green’s function for a site on the A sublattice, G1¢(w),

() (7.8)

— C—O’(w) /d5 £0
Ve W)io@) /) VG W)iow) —¢

where pg(e) is the density of states of the non-interacting system in the absence of the

Gl (w)

staggered field.
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In the DMFT this local Green’s function, and the self-energy ¥,(w), are identified
with the corresponding quantities for an effective impurity model. This implies that the
Green’s function Go ,(w) for the effective impurity in the absence of an interaction at the
impurity site is given by the same self-consistency equation (E3]) as in the last chapter.
The iterative scheme to find self-consistent solution can be carried out in the same way as
described there, we only need to take into account the different form of the local Green’s
function (ZX).

To find antiferromagnetic solutions, we calculated self-consistent solutions for a de-
creasing sequence of staggered magnetic fields to see if broken symmetry solutions of this
type exist as the staggered field is reduced to zero. For the non-interacting density of
states po(c) we take the Gaussian form po(e) = e~ (/t)° /\/7t*, corresponding to an infi-
nite dimensional hypercubic lattice. It is useful to define an effective bandwidth W = 2D
for this density of states via D, the point at which po(D) = po(0)/e?, giving D = /2t*
corresponding to the choice in reference m In all the results we present here
we take the value W = 4. In the NRG calculations we have used the improved method of
evaluating the response functions with the complete Anders-Schiller basis, and also deter-
mine the self-energy from a higher order Green’s function. The staggered magnetic field
induces a sublattice magnetisation,

1

ma = §(HA,T —na,l), (7.9)

and the spectra for both spin components differ. For certain parameters, this difference
persists as the staggered field is reduced to zero so that one has a spontaneous sublattice
magnetisation corresponding to spontaneous antiferromagnetic order. For the case away
from half filling, § # 0, we have to keep adjusting the chemical potential when iterating
for a self-consistent solution. It shows a slightly oscillatory behaviour when iterating for a
specific filling x, and we follow the procedure of stabilising the calculations by averagin
the effective medium over a number of iterations as described in reference m
). This feature is related to the fact that the calculations are for a metastable
ground state and instabilities to more complicated ground states for antiferromagnetic
ordering than the homogeneous, commensurate Néel state, which forms the basis for these

DMEF'T calculations, can occur (Shraiman_and Sigeid |]_9_8d, |K_a,j;_o_e_t_a,]_] |]_9_9_d, [Emery et all
|].9.9.d, lvan Dongerl |].9.£l£1, |].9.9.d, |S.chulz| |].9.9.d, tEr_e.e.m.cks_a.n.d_la.r_r_alj |].9.9.E|, |Emm;&t_a.].] |].9.9.d,
IZILZ].&L&LB.].”Z_O_Oj) As far as phase separation in the ground state is concerned, the results
of our calculations are generally in line with the conclusions in IZu.tz].e_r_e_t_a.].] (IZ.0.0d) as they
are carried out within the same framework. The focus of this work is, however, the analy-

sis of generic quasiparticle properties in a doped antiferromagnetic state. We consider the
approach as a valid, approximate starting point for this endeavour, but modifications to
the results presented here can occur for calculations based on a more complicated ground
states not accessible within the DMFT framework. For a more extensive discussion of the
applicability of the DMFT in this situation we refer to the earlier work dZaLzler_et_a.].”ZO_(ld)




124 Renormalised quasiparticles in metallic Antiferromagnets

7.3 Quasiparticle analysis

To examine the nature of the low energy excitations, we will assume that the self-energy
Y, (w) is non-singular at w = 0 so that, at least asymptotically, it can be expanded in
powers of w. This assumption is not expected to be valid close to the quantum critical
point when the magnetic order sets in, but to be a reasonable assumption otherwise. We
also assume that the imaginary part of the self-energy vanishes which is confirmed by the
numerical results of the DMFT-NRG calculations. We will retain terms to order w only
for the moment. The higher order corrections will be considered later. We then find for

Co(w),

(W) = w(l=3%,(0)+ pe — Zo(0) (7.10)
= 2z, (w+ fi0e), (7.11)

where
fioe = zo(pt — Bs(0)), and z;'=1-3X.(0). (7.12)

The interacting Green’s function (7)) has poles at the roots of the quadratic equation,

CJ(W)C—J(W) - 52k =0. (7.13)

The solutions of this equation are

Epe=—i+\/& + A2, (7.14)

where &y = \/Z1ZjeR, Aft = (fo,; — flo,1)/2, and fi = (fio,t + fio,1)/2. This has the
same form as for the non-interacting system in a staggered field (Z3), so we can interpret
these excitations as quasiparticles coupled to an effective staggered magnetic field hg =
Afi/gup, with i playing the role of a quasiparticle chemical potential. This equation
gives the dispersion relation for these single particle excitations, which can be regarded as
constituting a renormalised band, or bands as there are two branches. The term magnetic
polaron is sometimes used to describe these single particle excitations in states of magnetic
order, because of the analogy with the motion of a particle in a lattice to which it is strongly
coupled, where the excitation is termed a polaron.

The corresponding density of states of these free quasiparticles on the sublattice is

(7.15)

ool) = [ OBR <¢<w+ﬂ>2—Aﬂ2),

:«/ZTZL w+ g+ oAR V2]

for |w + fi| > |Afi], and is zero otherwise. In the case of a half-filled band fi = 0 and there
is a gap at the Fermi level ex = 0.

To determine this quasiparticle density of states in the presence of the symmetry break-
ing staggered magnetic field we need to calculate z, and fig , for each spin type. Using the



7.3 Quasiparticle analysis 125

NRG we can do this in two ways. As the DMFT-NRG calculations give us the self-energy
Yo (w) directly, we only need its value, and that of its first derivative at w = 0, to deduce
both z, and fip, using equation ([LIZ). However, because the model is solved using an
effective impurity model, we can also deduce these quantities indirectly from the many-
body energy levels of the impurity on approaching the low energy fixed point, as was done
in the last chapter and is described in appendix This second method gives us not only
a check on the results of the direct method, but also allows to deduce some information
about the quasiparticle interactions U.

7.3.1 Quasiparticle weight

We first consider the values of the local quasiparticle weight factor z,, commonly known
also as the wavefunction renormalisation factor. This is an important factor in determining
the parameters needed to describe the low energy behaviour of the system. When there
is no k-dependence of the self-energy, as is the case for infinite dimensional models and
DMFT, the effective mass of the quasiparticles in the paramagnetic state is proportional to
1/z,. We show later that in the antiferromagnetic state the expression is more complicated
and depends both on 2, and the renormalised chemical potential fig .. We have determined
this quantity from the NRG results by the two methods described and give the values of
zs deduced for both spin types as a function of doping in figure [[2 The results are for
the case U = 3 (left) and U = 6 (right), where there is antiferromagnetic order and the
external staggered field has been set to zero.
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Figure 7.2: The quasiparticle weight z, as deduced directly from the self-energy and also
from the impurity fixed point (FP) for U = 3 (left) and U = 6 (right) for various dopings.

It can be seen that there is a reasonable agreement between the values obtained by the
two different methods of calculation. For the half filled case § = 0, the system has a gap
and there is no unique value for the Fermi energy. We have in this case taken values z,
only from the derivative of the self-energy at w = 0. Here due to particle-hole symmetry
21 = 7). When the system is doped but still ordered, however, z; # 2|, and the local
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quasiparticle weights have smaller values especially the minority (down) spin particles on
the sublattice. This is similar to the results we found for a doped Hubbard model in a
paramagnetic state in the presence of a strong uniform magnetic field in the last chapter.
For certain range of dopings the values of z; and z| do not vary much. The tendency is
that z| first decreases and later increases, whereas z; decreases over the whole range until
both of them merge at the doping point where the antiferromagnetic order disappears. On
the whole the behaviour for U = 6 is quite similar to that for the case U = 3, only that
the values of the local quasiparticle weights are further reduced.

7.3.2 Renormalised chemical potential

In figure we give the results for the renormalised chemical potential, fig, [defined in
equation ([ZI2)], for the two spin types in the spontaneously ordered antiferromagnetic
states for U = 3 (left) and U = 6 (right) for a range of dopings.
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Figure 7.3: The renormalised chemical potential fig, as deduced directly from the self-
energy and from the impurity fixed point (FP) for various dopings for U = 3 (left) and
U = 6 (right).

The values calculated by the two different methods can be seen to be in good agreement
here, as well. We have added the values for the half filled case. These were calculated
from the self-energy in the gap at w = 0. We can see that the value for renormalised
chemical potential for the majority spin, fig 1, drops from a finite value at half filling to
small negative value when the system is doped. This corresponds to the fact that the
chemical potential for the hole doped system falls into the lower band and will be seen in
more detail later. The general behaviour of the values for fig, for the case with U = 6 is
very similar to the case with smaller U, with again good agreement between the two sets
determined by the different methods.

The renormalised chemical potential fip, is an important parameter in specifying the
form of the sublattice quasiparticle spectral density p%(w). From equation ([ZI3) it can be
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seen that, as w — —fig+, Po,»(w) behaves asymptotically as
1

P (W) ~ e, (7.16)
\V4 w + 10,0
so the quasiparticle density of states has a square root singularity at w = —fip,. On the

other hand, however, as w — —fig o, fo,(w) behaves as

ﬁO,U(w) ~ /W + ﬁO,—Ja (717)

so the quasiparticle density of states goes to zero at w = —fip,_,. Between the two points,
w = —fip, and w = —[ig —,, the quasiparticle density of states has a gap of magnitude
2Afi. As can be seen in figure this free quasiparticle gap decreases with the doping and
closes in the paramagnetic state. If we take into account the values at half filling we see
a strong reduction of 2Afi, when doping the system. We also see that fig 1 drops to small
negative values for finite hole doping, which corresponds to the fact that the Fermi level
then lies within the lower band. These features will be seen clearly in the figures presented
in the next section, where we compare the quasiparticle densities of states with the full
local spectral densities calculated from the DMFT-NRG.

7.3.3 The quasiparticle interaction

When two or more quasiparticles are excited from the interacting ground state, there is an
interaction between them. For the Anderson impurity model this interaction is local and
can be expressed as U, a renormalised value of the original interaction of the ‘bare’ particles.
The value of U can be deduced by looking at lowest lying two-particle excitations derived
from NRG calculation as described in the appendix [Blin detail. In figure [ (left) we give
the values of UIIIQL(N), U,i}’lT(N) and (NIIL’LT (N) as deduced from DMFT-NRG calculation for
the Hubbard model in an antiferromagnetic state with U = 6, 10% doping and A = 1.8.
It can be seen that the three sets of results settle down to common value U.
Hence, we can go further and identify U with the local quasiparticle 4-vertex interaction
for the effective impurity model as in equation ([Z31), where I'; | | 1(w1, w2, ws,ws) is the
total 4-vertex at the impurity site, which is equal to the same quantity for a site in the
lattice model. With this interpretation it is possible to identify these parameters with
those used in a renormalised perturbation expansion.

In figure [Z4] (right) we plot the doping dependence of the renormalised interaction over
a range of dopings and U = 3 and U = 6. We can see that in both cases the values
decrease with increasing doping. Hence, the effective quasiparticle interaction is stronger
for a smaller hole density. For a certain range of dopings U does, however, not vary much.
We can also see that the ratio U /U for the effective interaction assume smaller values the
larger the bare U becomes. Also the absolute value of U, i.e. without the scaling with U
as in figure [, is smaller for larger bare U for the full range of dopings. We will see in the
next section that the fact that for larger bare U the quasiparticle interactions is smaller
leads to sharper quasiparticle peaks in the strong coupling case.
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Figure 7.4: Left: The N-dependence of the renormalised particle-particle, particle-hole and
hole-hole interactions for U = 6 and x = 0.9, showing that they converge to a unique value
U. Right: The renormalised quasiparticle interaction 0/U as deduced from the impurity
fixed point for various dopings and U = 3, 6.

7.4 Spectra

7.4.1 Local Spectra

The sublattice quasiparticle density of states pp ,(w), evaluated from equation (ZID]) with
the renormalised parameters, describes the low energy features seen in the local spectral

density p,(w) calculated from the DMFT-NRG (IB.a.uﬂ_and_H.&ﬂMsoﬂhﬂ.Olcl) At half filling
there is a gap at the Fermi level, so there are no single particle excitations in the immediate

neighbourhood of the Fermi level, and this is not a very interesting case to consider. But
for finite hole doping the Fermi level lies at the top of the lower band. We look in detail
at the case of 10% doping where the Fermi level lies at the top of the lower band, and
consider the case U = 3. In the upper panel of figure we compare the spectral density
pt(w) with the corresponding quantity z1po 1(w), from the quasiparticle density of states.

The behaviour near the Fermi level (w = 0), and the singular feature seen in the lower
branch of pt(w), are well reproduced by the quasiparticle density of states. Above the
Fermi level there is a peak in the quasiparticle density of states similar to that in the full
spectrum but somewhat more pronounced. Above the Fermi level and below the upper
peak there is a pseudo-gap region. In the free quasiparticle spectrum it is a definite gap.
In the spectrum calculated from the direct NRG evaluation it appears as a pseudo-gap,
with rather small spectral weight just above the Fermi level. From the direct DMFT-NRG
calculations, due to the broadening features introduced to obtain a continuous spectrum, it
is not always possible to say definitively whether there is a true gap above the Fermi level
or not. To resolve this question we can appeal to the renormalised perturbation theory to
look at the corrections to the quasiparticle density of states arising from the quasiparticle
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Figure 7.5: The free quasiparticle spectrum (dashed line) in comparison with DMFT-NRG
spectrum for x = 0.9 and U = 3 for the spin-up electrons (majority, upper panel) and

spin-down electrons (minority, lower panel).

interactions. A calculation of the imaginary part of the renormalised self-energy ig(w)
to order U? is sufficient to settle this issue. One finds that there is a small, but finite
imaginary part of the self-energy in the free quasiparticle gap 2Afi, when it lies above the
Fermi level, giving rise to a finite spectral weight there. However, this spectral weight is
very small close to the lower edge of the free quasiparticle density of states, when this edge

lies only just above the Fermi level ).

7.4.2 k -resolved Spectra

We can learn more about the low energy single particle excitations by looking at the spectral
density of the Green’s function Gy, ,(w) in equation (L) for a given wave-vector k. With
the self-energies ¥, (w) calculated within the DMFT-NRG approach all elements of this
matrix can be evaluated. The local spectra and self-energies are spin-dependent in the
doped broken symmetry state, however, the free quasiparticle bands E,%i [equation ([ZI4I)]
do not depend on the spin. Here, we focus on the diagonal part of Gy, ,(w) corresponding
to the A sublattice,
C—O’(w)

G@)C @) — 2

The weights of the quasiparticle excitations in this case depend on the spin corresponding

Gro(w) = (7.18)

to the sublattice properties. We note that one can also analyse the quasiparticle bands
differently, for instance, from the k-resolved spectra and the diagonal form of Gy, ,(w).
The form of the quasiparticle bands remains unchanged then, but the weights differ and
do not depend on the spin ¢ in that case.

We first of all look at the Fermi surface which is the locus of the k-points at the Fermi
level (w = 0) where the Green’s function has poles. The conduction electron energy eg,, at
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these point is given by
e = (11 = 21(0)) (1, = 21(0)). (7.19)

By Luttinger’s theorem, the volume of the Fermi surface for the interacting system must
equal that of the non-interacting system with the same density. As the self-energy depends
only on w, the two Fermi surfaces must also have the same shape, and therefore must be
identical. The Fermi surface of the non-interacting system is given by eg, = 10, where pg
is the chemical potential of the non-interacting system in the absence of any applied field
for the given density. For this to be identical with that given in equation (ZI9l),

(1 = E1(0) (1 — 21(0)) = - (7.20)

We can check that this relation indeed holds from our results for ¥, (w) and p,, independent
of the value of U, or in the case of an applied staggered field, independent of the field value.
This relation implies that the total number of electrons per site n can be calculated from
an integral over the non-interacting density of states,

Ho

n=2 / po(w)dw, (7.21)

— 00

where in the hole doped case pg = — /i1t and fie = fto — 3 (0).
To relate this result to the quasiparticle picture, we expand the self-energy in equation
([CIX) to first order in w, but retain the remainder term. The Green’s function can be

rewritten in the form,

Cro(w) = = (7.22)

Co(w)

where 50(w) = w+ flog — ia(w). We define a quasiparticle Green’s function é,w(w)

Qifa(w)
¢

o(w) — 521:’

via 2,Gho(w) = Gro(w). The renormalised self-energy vanishes, ¥, (w) = 0, for the

free quasiparticle Green’s function égcol(w), which can be separated into two independent
branches of free quasiparticles,
. u? (ex) u? (eg)
G0 (W) = + (7.23)
k, 0 0o
7 W_Ek,+ w—Ek’_
where Eg’i was defined in equation ([LT4)) and the weights are given by
A
r (7.24)

1
ud (ex) = B 1:Fffﬁ
\/AL* + &

This is similar in form to mean field theory, which would correspond to putting z, = 1, and
Aji = Umpyg, where myr is the mean field sublattice magnetisation. The spin dependent
contribution in ([ZZ4)) which arises from the second term is most marked in the region near
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the Fermi level. It should be noted that the quasiparticle excitations E,Oci and weights
ug (eg) here are defined by expanding the self-energy at w = 0. This is so that they
correspond to the free quasiparticles in the renormalised perturbation theory which have
an infinite lifetime.

(0)

The spectral density p,, ' (w) for this free quasiparticle Green’s function is a set of delta-

functions,
~(0
Phop (@) = uS (ek)0(w — B, ) +u” (ex)3(w — BR, ). (7.25)
On the Fermi surface E,Oc _ =0, which is consistent with the result for the Fermi surface

given in equation ([ZI9). Summing over k gives the local quasiparticle density of states in
equation ([ZI0)). We define the quasiparticle number 7 as the integral of the sum of the
spin up and spin down quasiparticle density of states up to the Fermi level,

ww+p) Vi{w+i)? — A2
m—zwﬂt Wﬂo( N ) (7.26)

If we change the variable of integration to w’, where w'\/zZ1z] = \/(w + f1)2 — Ai2, the
integration can be shown to be identical with that in equation ([ZZI), using the fact that

n=

to = —+/m1fi;. We then have an alternative statement of Luttinger’s theorem in the form
n = n. This can also be found by summing both spin components in ([ZZH)), integrating
over w and then converting the k-summation to an integral over the free electron density
of states pg(w). We can check in our numerical results that the relation in this form holds.
The occupation number n can be calculated both from a direct evaluation of the number
operator in the ground state, and also by integrating the sum of the spectral densities
po(w) of the full local Green’s function to the Fermi level. The value of 7 is similarly
determined from the integral over the total quasiparticle density of states, p,(w). All three
results were found to be in good agreement, to within one or two percent deviation at the
most.

Before discussing the k-resolved spectra in detail we would like to ask what the spectral
weight wq, of a quasiparticle excitation at the Fermi level in the lower band is,

Gop(w) = % (7.27)

kp,—
For this we can not focus on the spin dependent sublattice quantities, but have to sum
over both sublattices or equivalently the two spin components. The reason for this is that
the antiferromagnetically ordered state does not possess any net magnetisation and has on
average as many spin up polarised as spin down electrons. The division in the A and B
sublattices is convenient for the DMFT calculations but somewhat artificial. In our case
with hole doping the Fermi level lies within the lower band, which for the free quasiparticles
is denoted by Egﬁ. The corresponding weight on the Fermi surface defined by ([ZI9) is
then given by

zr + 2z zr — 21 )AL
ZZU (Ekyp) = T2 l_i_(Tle‘) H, (7.28)
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where the average of the renormalised chemical potential ji and the difference Aji were
defined below equation ([ZI4). From the definition of Afi we see that the second term
in (C2Y) is spin rotation invariant. The spectral quasiparticle weight wq, on the Fermi
surface depends not only on the renormalisation factors z,, but also on the renormalised
chemical potentials fig,. The same result for the weight (ZZ8) can be obtained from the
diagonal form of Gy ,(w) and the spectral weight of the lower band. The weight wqp
corresponds to the spectral weight Z at the Fermi level as for example given in references
Dagottd (1994), Sangiovanni ef. all (20065)d). The first term of the result for wgy, is like
the arithmetic average of z,. From figure we can see that z; > 2| and from figure
that fig,) < fiot < 0. Therefore the second term in ([LZ8) gives a positive contribution
to the spectral weight. At the end of the chapter in figure [LT0 we show values of wq, in
comparison with the arithmetic average of z,.

In order to understand better the properties of the quasiparticle bands, we now com-
pare the quasiparticle spectrum with the k-resolved spectral density pg ,(w) derived from
the DMFT-NRG results. In figure we make a comparison for the case of 12.5% dop-
ing with U = 3 for the Green’s function Gy ,(w) given in equation ([[LIF), pr(w) =
—ImGg o (w) /7, where w™ = w + in, with n — 0, with that derived for the free quasipar-
ticles, zaﬁgcojj w) from equation (CZH).

€07

Figure 7.6: The spectral density pg »(w) for the spin-up electrons (upper panel) and spin-
down (lower panel) plotted as a function of w and a sequence of values of e for U = 3
and 12.5% doping. Also shown with arrows are the positions of the free quasiparticle

excitations, with the height of the arrow indicating the corresponding weight.

The delta-functions of the free quasiparticle results are indicated by arrows with the height
of the arrow indicating the value of the corresponding spectral weight. The plots as a
function of w are shown for a sequence values of ¢, and, where the peaks in pg ,(w) get
very narrow and high in the vicinity of the Fermi level, they have been truncated. It
can be seen that the free quasiparticle results give a reasonable picture of the form of
Pk.o(w), particularly in the immediate region of the Fermi level. There is considerable
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variation along the curves in the way the overall spectral weight is distributed between the
excitations below and above the pseudo-gap as a function of €. This is most marked in
the region near the Fermi level for the spin-up electrons where most of the spectral weight
is in the lower band and it is much reduced in the upper band, whereas the opposite is
the case for the spin-down electrons. This is reflected in the analytic form of the weights
ug (eg), equation ([LZ). For instance, the majority spin weight ul (eg) for the lower band
E,%ﬁ becomes maximal near the Fermi energy, whereas ul(ak) goes to zero there. The
finite width of the quasiparticle peaks in pg »(w) can be described by a RPT, when we take
into account the renormalised self-energy ¥, (w) in equation ([ZZ2). If we, for instance, use
the second order approximation in U, which was mentioned in the last section, we get a
similar behaviour for small w as seen for pg ,(w) in figure

From the positions of the peaks in the pg ,(w) spectra we can deduce two branches of
an effective dispersion Ey, 4 for single particle excitations and compare it with the ones for
the free quasiparticles Eg’i. We give the results for U = 3 in figure [
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Figure 7.7: A plot of the peaks in the spectral density pg »(w) (full line) as a function of e,
for U = 3 (left) and U = 6 (right) and 12.5% doping compared with the free quasiparticle
dispersion E,% (dashed line). For U = 6 on the range shown the lower band Ej, _ completely
coincides with the free quasiparticle band E,%’_

It can be seen that E,%ﬁ tracks the peak in the lower band closely over a wide range of
ek, —1.5 < g < 1.5 (note the bandwidth W = 4). This is not the case in the upper
band, where E,%,Jr tracks the peak closely only in the lowest section that lies closest to the
Fermi level. As one can see from the dotted line the Fermi level lies in the lower band and
intersects the lower band twice. This corresponds to the two values with opposite sign 5iF
as can be see from equation (ZI9).

The corresponding results for k resolved spectra for U = 6 and also 12.5% doping
are shown in figure In order to compare well with the case U = 3 we have chosen
an identical range for w and &g, although the large spectral peaks near the energy are
very close together in this presentation. It can be seen that the overall features are very
similar to those seen for U = 3. For the spin up spectrum (upper panel) the peaks for



134 Renormalised quasiparticles in metallic Antiferromagnets

Figure 7.8: The spectral density pg ,(w) for the spin-up electrons (upper panel) and spin-
down (lower panel) plotted as a function of w and a sequence of values of e for U = 6
and 12.5% doping. Also shown with arrows are the positions of the free quasiparticle

excitations, with the height of the arrow indicating the corresponding weight.

the lower band have most of the weight near the Fermi energy, whereas the upper band
is suppressed there, and vice versa for the opposite spin direction. The lower bands are
tracked well by the free quasiparticles, and we can see that the bands for the larger value of
U are significantly flatter. This is also clearly visible in figure [ (right), where we again
compare the quasiparticle band with the peak position of the full spectra. On the range
shown the lower band Ej _ completely coincides with the free quasiparticle band Eg’_.

From the k-resolved spectra in figures and [L¥ we can also extract the width of the
quasiparticle peak Agp, in the spectral density pg ,(w). Its inverse 1/A, gives a measure
of the quasiparticle lifetime. The results for A, for the lower band Ej, _ for the two cases
U = 3,6 and 12.5% doping are shown in figure [[d as function of eg. This plot brings out
more clearly the feature that can be seen already in figures and (upper panel) that
the width increases sharply when we move away from the Fermi level and the values for
the width Ay, for U = 6 are significantly smaller than those for U = 3. This is in line
with the fact that the local quasiparticle interaction U is smaller for the larger value of
the bare interaction U as commented on earlier. The free quasiparticle picture is therefore
even more appropriate in the case with stronger interaction. To numerical accuracy the
width vanishes at 5& and is finite for the interval Ehp < €k < 57ch which lies within the
lower band but above the Fermi level.

Another quasiparticle property that can be extracted from our calculations is the en-
hancement of the effective mass m*/m. In a Fermi liquid it is reasonable to define m*/m
as the ratio of the linear expansion coefficients of the non-interacting and interacting dis-
persion relation evaluated on the Fermi surface ([ZI9) EI If we use the free quasiparticle

In DMFT the Fermi surface of the non-interacting and interacting system have the same form and we
do not need to specify the k-vector for the effective mass.
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Figure 7.9: Left: A plot of the width of the peaks Ay, in the spectral density pg ,(w) as a
function of e for U = 3 (dashed line) and U = 6 (full line) and 12.5% doping. Right: The
ratio m*/m plotted over a range of t2/U for 7.5% doping. For the bare band bandwidth
W = 4 we have t = /2 here.

form E,%,f from equation ([ZT4) for the interacting case, this yields

* 1 ~
mo ’kak‘ _ ‘:U" (7_29)

m  |ViEp _| o  VEZ oo,

The effective mass enhancement therefore does not only depend on z,, but also on the

renormalised chemical potentials fig,. The general trend for m*/m calculated from ([ZZ9)
as function of +2/U can be seen in figure (right) for the case of 7.5% doping. The
effective mass increases strongly for large U as the hole motion is energetically more costly
in the ordered background. The fact that the lower band for U = 6 seen in figure [[1
(right) is flatter than in the case U = 3 in figure [ (left) can be clearly attributed
to the larger effective mass. We find a similar behaviour for m*/m as function of U
for different filling factors from the ones shown in figure [C9 (right). The trend is that
the effective mass enhancement is less pronounced for larger doping, which is intuitively
understandable by the quasiparticle motion in an ordered background. In the DMFT
framework for the paramagnetic state as well as the case with homogenous magnetic field,
the quasiparticle spectral weight wq, and the inverse of the effective mass enhancement
m/m™* can be described simply by the renormalisation factor z,. In figure [Tl we compare
the spectral quasiparticle weight wq, ([CZ) the arithmetic, (24 + 2})/2, and geometric,
/717, average of the renormalisation factors, and the inverse of the effective mass, m/m*,
from equation ([Z2Z9) for U = 3 for various dopings.

As seen in this case with antiferromagnetic symmetry breaking these quantities take a
different form ([LZV) and (CZ9) and have distinct values. As a first approximation the
quasiparticle spectral weight wq, corresponds to the arithmetic average of the renormal-
isation factors z,, whilst m/m™* relates to the geometric average. In general, one can,
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Figure 7.10: Comparison of the spectral quasiparticle weight wq, (C28) the arithmetic,
(21 + 2;)/2, and geometric, ,/z1z], average of the renormalisation factors, and the inverse
of the effective mass, m/m*, (LZ9) for U = 3 for various dopings.

however, not omit the dependence on the renormalised chemical potential as it gives a
significant contribution as seen in figure [Tl This can be understood for example for the
limit of zero doping. The system then becomes an antiferromagnetically ordered insulator
with a spectral gap. The weights z, tend to finite quite large values, but the effective mass
must diverge. This is found in equation ([ZZ9)) since fig 1 — 0 for 6 — 0 and the trend can
be seen in figure [LT0

To summarise, we have given a detailed analysis of the properties of the renormalised
quasiparticles in a metallic antiferromagnetic state in the Hubbard model. The calcula-
tions are based on a commensurate antiferromagnetic ordering in a bipartite lattice and
carried out within the DMFT-NRG framework. It is shown that the relevant quasiparticle
parameters can be deduced by two different methods, which give values which are in reason-
able agreement. We have presented results for k-resolved spectral functions, and analysed
them in terms of quasiparticle bands. We also gave explicit expressions for the quasipar-
ticle spectral weight and the effective mass in terms of the renormalised parameters. The

results for the spectral auasiparticle weight wqp, are on the whole in agreement with earlier

) and more recent ones (IS.a.n.gJ.oxa.n.u.l_at_a.].] IZD.O.GHB) In refer-

) the effective quasiparticle bandwidth Weg in the t-J-model is found

calculations
ence
to decrease with decreasing J. This is line with our results if we identify Weg ~ m/m*
and J ~ t2/U (see figure [CT).
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Chapter 8

The attractive Hubbard model

In this final chapter we present results of a preliminary study of the attractive Hubbard
model within the DMFT-NRG approach. First we discuss the relevance of the model and
in which situations it is applied. Then we outline the details for the DMFT approach.
This is followed by a presentation of results for static expectation values, like the average
pair density and the anomalous expectation value as function of the local attraction U and
dynamic spectral functions.

8.1 The BCS-BEC crossover

Whilst in the foregoing chapters we have discussed impurity and lattice models with a local
repulsion, we consider a system of fermions with local attraction in this last chapter of the
thesis. As outlined in section the attractive model and the repulsive model can be
mapped onto one another by a spin-isospin transformation. Symmetry breaking fields in
the spin channel then take the role of the corresponding symmetry breaking fields in the
charge channel. Hence, for instance, the repulsive Hubbard model with the spontaneous
antiferromagnetic symmetry breaking as discussed in the last chapter translates to a charge
ordering symmetry breaking for the attractive model. At half filling charge order and
superconductivity are degenerate as they form part of a larger symmetry group there.
The focus here is on the superconducting state, which corresponds to an offdiagonal long
range order in contrast to the diagonal long range order for the antiferromagnetic and
charge ordered state. To study superconducting solutions it is therefore better to consider
a situation with a different filling factor, x # 1. We will explore the superconducting
phase both at half filling and also for quarter filling, where no degeneracy with the charge
ordered state occurs. The problem is approached in a similar way as before with DMFT-
NRG calculations.

There are various reasons why it is of interest to study the attractive Hubbard model.
One of them is that it can be viewed as an effective model for superconductors for different

coupling strength. In fact, in the famous theory ofIB_aLdﬁen,ﬁo_Qp_eLamLSLhﬁ_eﬁed (I]_E)_Eﬁl)




138 The attractive Hubbard model

(BCS) an effective attractive model with a Debye cutoff is studied. The local attraction
between the electrons can be thought of as mediated by a boson, a phonon or exciton for
instance (Ilyl.u;n.a.s_&t_all Il9.9.d) Retardation effects are neglected in such an approach. In
the weak coupling limit, U — 0, BCS mean field theory has been very successful. The

resulting excitation gap Ag. in the spectrum and the transition temperature T, can be
obtained from simple mean field equations (Ilyl.u;n.a.s_et_al] Il9.9.d), and one finds that both
depend exponentially on U, viz Ay, T, ~ e~ YUpro The general picture in this situation

is that for any attractive interactions the Fermi-surface of the non-interacting electrons is
unstable to the formation of Cooper pairs m I@) These pairs extend over a large
range in position space and are often referred to as momentum space pairs, CLTCT_k’l. The
kinetic energy for the state with these pairs is a bit larger than in the normal phase, but
the bound-state formation leads to a gain in potential energy. The Cooper pairs only begin

to form at the transition temperature T,.

In contrast, in the strong coupling limit, where |U| exceeds the other energy scales, the
fermions are tightly bound to local pairs in position space already at a high temperature
Ty of the order of U. These pairs behave like real bosons and can therefore undergo
Bose-Einstein condensation (BEC) at a lower temperature 7., which is proportional to the
particle density and the inverse of the mass of the pairs mp. In this limit the effective
mass mp of a boson (pair of fermions) can be related to the inverse of the pair hopping
amplitude tg. One finds tg = 4t? /U in the lattice model MM), and thus mp ~ U.
As a consequence the critical temperature for condensation decreases with U, T, ~ t2/U
in the BEC limit. The transition here is driven by kinetic energy, which is lowered as
fermion pairs join the condensate with the lowest energy. The single particle excitation
gap Agc in this limit is proportional to the magnitude of the attraction, Ag. ~ U, since
the binding energy of the pair increases linearly with U. These two limiting cases, the
weak coupling BCS limit and the strong coupling BEC limit, correspond to quite different
situations and it is remarkable that as discovered over the years, they are connected by a

smooth crossover (IEa.g].esI I].Q_ﬁd, IN_O.ZJ.ELLES_&D.(LS.C}].UJJII;BJ.UJS' I].9.8.Ei, IB.a.n.d.eU.A I].9.9.EI, I.Leggﬂtﬂ

). It was shown that the spectral gap Ag. at zero temperature evolves smoothly from

small to large U. Also the BCS wave-function from the weak coupling limit can be seen to
go over continuously to a wave function of bosons as fermionic pairs in the strong coupling
limit. Moreover, the transition temperature 7, to the superfluid state is a smooth function
of the local attraction connecting the BCS and BEC limit. Here we will focus on the
attractive Hubbard model to study this BCS-BEC crossover. It is worth mentioning that
this problem has also been investigated by a continuum field theoretic model m

11992, Dupuid 2003, Randeria 1993, for instance).

In the 1990s experimental groups were first able to realise BECs for laser cooled bosonic

atoms, from which the field of cold atomic gases emerged. In recent years many groups have
also focused on studying the properties of fermionic cold gas systems. When loaded into an
optical trap their interaction can be tuned by means of a Feshbach resonance. One therefore
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has a very clean and controllable system, which can be modelled by the Hubbard model.
It has been possible to generate a BEC of tightly bound fermions (IGL&LU.&L&L&]J |20.0.§i,
|me.r_lf.i.n_et_aﬂ |20_0£‘), and experimental groups are working on detecting the full crossover
to the BCS limit (IZm.ed.em_et_al“ZO_(ld) Apart from the cold gases the study of the BCS-
BEC crossover had already been taken up by condensed matter researchers interested in

understanding the strong coupling and high temperature superconductors

). The high temperature superconductors contain some properties, which are better
understood in terms of local pairs, preformed above the transition temperature 7., than
in the BCS picture (IIQs.ch.l_&t_a.].] |2.0_O.Ei) DMFT studies for the attractive Hubbard model
have been carried out byIK.eller_e_t_a.]J (I2.0.0J] and IQa.p.o.mL&t_a.]J (IZ.0.0j ) in the normal phase,
and more recently by I(la.r.g_&t_a.].] (IZ.0.0.d and h:as.c.h.l_e_t_a.].] (IZ.O_O_d in the broken symmetry

phase. Here we will also focus on describing the attractive Hubbard model for various U in

the broken symmetry phase employing the DMFT-NRG method. The work presented in
this chapter is still in progress and the results are at a preliminary stage. We will therefore
keep the presentation very brief.

8.2 The DMFT setup

We want to study the attractive Hubbard model in the grand canonical formalism (L33,

H = — Z(tUCIUCJU +hC) — Mano_ — UZ”@,T”M (81)
o i

i7j70.
For convenience we take this form (&) with U > 0. To study superconducting order we

include an explicit superconducting symmetry breaking term Hg. with a “field” A%, After
a lattice Fourier transform (BI]) then reads

H+Hsc = Z(ekz _.u)c;rc,gckz,a _ASCZ[C}::T -k, +hC UZTLZ 17, - (82)
k,o k

Note that we have not restricted the k-summation in Hg.. The non-interacting Green’s
function is best worked out in Nambu space like in (EI0), i.e

0 -1 _ W= fk Agc
Giw)™ = < A bty > ; (8.3)

where we have introduced & = €, — . The interacting problem can be treated by intro-
ducing the matrix self-energy X, (w) such that the interacting Green’s function is given by
the Dyson equation

Gp(w) ™ = Gr(w) ™ = Zg(w). (8.4)

The DMFT formulation in the path integral formalism for this model is in analogy to
what has been presented in chapter 2. Due to the symmetry breaking field it is, however,
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suitable to work in Nambu space with

(7 = l,T(T)
Cz( ) ( ;rl(,]_) >

and 2 x 2 matrices. The effective Weiss field is now a 2 x 2 matrix G;'(7) and the effective
action on the “0™-site reads

B

Se = — /d /dTZCO L —1)Co(r U/dTZnOT T)no, (T (8.5)

0

As the effective impurity model we consider the attractive Anderson model in a supercon-
ducting medium (E7]) as discussed in the beginning of chapter 5 with an additional on-site
symmetry breaking AZ. The non-interacting Green’s function matrix then has the form

of equation (BIT),
Qo(w)il =wly — gq13 — Agc’i'l — K(w), (8.6)

where £4 = —p and the on-site symmetry breaking field A%, = A2. The generalised matrix
hybridisation for the medium K (w) has the form

K@) =3 3 Vig,@)7s (8.7)
k

where g, (w) was given in (BIT).
The DMFT self-consistency equation (Z71]) in this case with symmetry breaking is a
matrix equation,

Gy'(w) =Gw) ™ + Ew), (8.8)

where we have dropped the k-dependence of the self-energy. We use the NRG to solve the
effective impurity problem for a given medium K (w) and calculate ¥(w). From this we
can obtain the diagonal local lattice Green’s function which for the superconducting case

takes the form [cf. (B3) and &),

(G1(2) = ) (C2(w) + ) — (A% — a1 ()AL — T12(w))’
where (1 (w) = w+p—311(w) and (2(w) = w—p—Laa(w). As before po(e) is the density of
states of non-interacting fermions. The offdiagonal local lattice Green’s function is given
by

G(w) =

off _ w e PO( )
@) = ) [ dee e R s e sy &1

We denote Gq1 = G, Go1 = G and Go1(w) = Gra(—w)*, Goo(w) = —G11(—w)*. These
Green’s functions can be collected to the matrix G. Having calculated the local Green’s
function G the self-consistency equation (BF]) determines the new Weiss field and medium.
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We take the impurity model in the form described in chapter 5, and identify Go(w) = G, (w).
Then from equation (BH) we obtain an equation for the effective medium matrix K(w).
This has the general form (7)), with diagonal,

w —|— €k
K E A1
and offdiagonal part,
K 12
ul) = 5 Vi (8.12)

Note that the parameter of the medium Ay is different from the “external field” A2.. In
the calculations with spontaneous superconducting order we will always consider the limit
A% — 0, where a solution with superconducting symmetry breaking will have a bath
parameter Ag. # 0. Due to the symmetry broken form ([&TIT]) and ([BI2) it is not straight
forward to extract the parameters e, Vi and Ay and the corresponding ones for the
effective linear chain problem relevant in the NRG approach. To carry out the calculations
here we have considered the diagonal part of the medium Kji(w) as the earlier scalar
function K (w), from which we can calculate the linear chain parameters by the standard
method (IBJ.].Ila._at_a.].] I]_9.9j, Bater |2_0_O_7|) The medium parameter Ag. (see chapter 5) is
determined from the mean field criterion

0
Age =Ulcorco,y) =U /dw (— %ImGOH(w)). (8.13)

—o0
This procedure has the advantage that the same NRG program as for calculations for the
local model in chapter 5 can be used. The obvious disadvantage is that we do not make
full use of the self-consistency equation involving Ksj(w), and the mean field criterion
([BI3) overestimates the size of the gap Ag.. An improved approach needs to take into the
full matrix structure of the self-consistency equation properly, and a more general form
of medium for the Anderson model with for instance an energy dependent parameter Ag.

needs to be considered. One possible way for such a generalisation is described in

M) section 1.4.3.

8.3 Renormalised quasiparticle description

The k-dependent Green’s function is given as in equation (B4)),
w + fk, - 222((4)) ASC - Elg(w)
ASC - 221((4)) W — fk, - Ell(w)
[w =&k = B (llw + &k — Taa(w)] = [A% — Tra(W)][AL — Ban (w)]”

The excitations of the system can be analysed as usual as the poles of (BIdl), which are

Gr(w) =

(8.14)

given by the zeros of the denominator. In order to be able to develop a simple picture of
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the quasiparticle excitation of the attractive Hubbard model we proceed in a similar way
as in chapter 5, where we studied the bound state equation with renormalised parameters.
We expand the diagonal self-energies to linear order and approximate the off-diagonal
ones by a real constant at w = 0, similar as in (227). This is motivated by the fact
that the imaginary part of the self-energy vanishes in the gap, ImX(w) = 0, and the fact
that numerical results for the real part show an approximately linear behaviour. In this
approximation the excitations are given by

Ep® = +Ep = +1/E2 + A2, (8.15)

where we have introduced &, = z[€, — £(0)] and Ay = 2(A% — £°f(0)), with the usual
definition 27! = 1 —3(0)". We can see that when we study spontaneous broken symmetry
and take the limit A%, — 0, the superconducting gap is mainly given by the value z3°%(0).
Then the diagonal quasiparticle Green’s function é%(w) and the offdiagonal part é’%’og(w)

can be written in the well-known form

CO(w) = "k U () = uion( — oy — — 1) (8.16)
k w—E})  w+ EY k kT w—E} w+EY) '
where _
2 §k> 2 _ 1( _ 5_k>
uh = (1 + 50 =515 (8.17)

These expressions describe the two bands of quasiparticle excitations and their weights.
They reduce the Bogoliubov mean field result for z — 1 and £(0) = Un/2 and %°%(0) =
Uf(corco, ). This result is most accurate in the weak coupling limit for small U. In
the strong coupling limit, the spectral gap is large and therefore the expansion around
w = 0 is more questionable. We will show, however, that in the calculations presented the
spectra can still be described well by the approximation (8I6l). The spectral gap is then
proportional to U.
In BCS theory the excitation gap Ag. at T'= 0 can be found from the equation

U ZASC Asc
Ay =U E UpVk = — E = E , (8.18)
sc . kVE 2 - \/ 5k: _ 24 Agc

o)

where pg = p — 3(0) and the gap is defined as in equation [&I3), Asc = U{coco,) ).
Equation (BI8]) is clearly applicable in the weak coupling limit, but also gives a reasonable
result in the strong coupling limit, where Ay = U/2(2 — 2)/2 (I]MLL(;U.a.s_at_a.]J I].9.9.d) x is
the filling factor. As mentioned earlier the gap A given by (BIR) interpolates therefore
smoothly between the BCS and BEC limit. From equation (8I8) we can also determine
the anomalous expectation value (co 1co |).

Another quantity of interest is the double occupancy (nyn|) or average pair density.
In the non-interaction limit it is given by (x/2)2. The probability to find an electron
with spin o on site is /2 and as the particles are uncorrelated (nyn|) = (z/2)%. In the
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strong coupling limit the probability to find an electron on site is still /2, but since the
attractive energy is large the probability to find another one there goes to one, and therefore
(nyny) — /2. In other words, all particles are then bound to pairs and the pair density is
given by half the filling factor, (nyn|) = /2. The double occupancy (nyn|) multiplied by
U is also of interest as it gives the expectation value of the potential energy. For a system
in a coherent superfluid state another relevant quantity is the superfluid stiffness D;. It is
a measure for the energy required to to twist the phase of the condensate. It is therefore
related to the degree of phase coherence of the superconducting particles, and it is usually
proportional to the superfluid density ns. It can be found either from the weight of the
delta-function in the optical conductivity or from the current-current correlation function.
In the DMFT approach and for the Bethe lattice with semicircular density of states pg(e

it can be calculated directly from the offdiagonal Green’s function (m{;td_aj
I%). At zero temperature it takes the form,

0
D, =2 [tk miewView) [ mawReay ) (819
T

—0o0

where G;’OH(&.}) is the retarded offdiagonal Green’s function (8Id)) and V (g) = (4t*—¢3)/3
is a square vertex (IIst;h_]_at_aJJ |20_0_E]) We can evaluate the expression (BIU) using the

renormalised quasiparticle Green’s function zé’%’og(w) (BTd), which yields the somewhat

simpler expression

n 2,2
ULv
D = 42* [der po(ea)V (en) Kk (8.20)
k
-D

8.4 Results

We have carried out DMFT-NRG calculations for the attractive Hubbard model at half and
quarter filling in the state with spontaneously broken symmetry, A% — 0. For simplicity
the semicircular density of states (Z70]) was used. The energy scale is set by ¢ = 1 such that
the bare bandwidth W = 4. In figure we give results for the static expectation values
double occupancy (nyn|) and the anomalous expectation value (cp 1co,|) as a function of
U for x =1 (left) and = = 0.5 (right).

We can see that as discussed above the pair density or double occupancy increases con-
tinuously from the value (z/2)? (1/4, left, and 1/16, right) at U = 0 to the value (x/2)
(1/2 and 1/4). The anomalous expectation value (cg 1co ) is zero in the non-interacting
case, and for small U it increases like e=/UP0(0) a5 in BCS theory. For large U it tends
to the value \/z(2 — x)/2 (1/2, left, and 0.433, right) as discussed above. The gap Ag
is then proportional to U as expected in the BEC limit (energy for pair breaking). The
dashed line gives the result for (coco,) from the mean field equation (IR)), which fits
the DMFT-NRG result very well for the full range of interactions U. Due to numerical
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Figure 8.1: The static expectation values double occupancy (n4n|) and the anomalous
expectation value (cp1co|) as a function of U for half filling (left) and quarter filling
(right). The dashed line gives the result for (cg1co,)) from the mean field equation (EIX]).

problems with the small gap and very sharp peaks the BCS limit was not investigated in
great detail with the DMFT-NRG calculations.

In figure the superfluid stiffness D calculated from equation (8TI9) is shown as a
function of U for half filling (left) and for quarter filling (right). The dashed line shows
the result as obtained from equation (B20), where the quasiparticle Green’s functions are
used to evaluate the integrals.
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Figure 8.2: The superfluid stiffness D; as calculated from the offdiagonal Green’s function
in equation (BIT) for z = 1 (left) and = = 0.5 (right). The dashed line gives the result for

Dg, when evaluated with the quasiparticle Green’s functions as in (820).

We can see that the results for D, agree generally well, which shows that the approximation
(B20) is already quite good. In both cases for the filling the superfluid stiffness is maximal
in the BCS limit and decreases to small values in the BEC limit. D; is proportional to
the inverse of the effective mass of the pairs mp ~ U, and therefore expected to decrease
like 1/U. The system in this limit consists of heavy, weakly interacting bosons, with

little phase coherence. The results shown are in agreement with the ones reported by
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Toschi et all (2005). At the time of writing it has not been possible to investigate the BCS
limit, U — 0, in more detail with the DMFT-NRG calculation in detail due to numerical
problems when evaluating the integrals in (RI9)). It can, however, be studied in BCS mean
field theory based on (BIS) for the gap. One finds in the limit U — 0, which implies that
Age — 0, that the superfluid stiffness Dy goes to a constant value. The superfluid stiffness
is therefore maximal in the BCS limit, when calculated with the approximations here.

We now turn to the spectral functions pg(w) = —ImGg(w)/7. In the BCS limit we ex-
pect that they can be described well by the free quasiparticle spectra 259 = 2[~ImG9(w)] /7
ETI8). In figure we plot the k-resolved spectra in the two limiting cases for U = 1
(BCS limit, left) and U = 6 (BEC-limit, right) for quarter filling, x = 0.5.
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Figure 8.3: The k-resolved spectral functions pg(w) for quarter filling in the BCS-limit,
U =1 (left), and towards the BEC limit, U = 6 (right). The arrows show the delta-function
peaks of zp9 (w), where the height of the arrow indicates the weight of the peak.

We plots show a small spectral gap for U = 1 and a large gap (Ey = 2A) of the order of U
for the strong coupling case. We can see a series of broadened quasiparticle peaks which are
most narrow in the region e = g, where pg = p—%(0) (numerically po ~ —0.79 for U = 1
and pp ~ —1.61 for U = 6). As can be seen e = i is also the point where the spectral
gap is minimal. We have also added arrows corresponding to zﬁ%(w), which indicate the
position of the quasiparticle peaks :I:E,% and the height gives the spectral weight. We can
see that they track very well the position of the real quasiparticle excitation Ej in both
cases. The width of the peaks comes from the imaginary part of the self-energies which
lead to a finite life-time of these quasiparticles. These spectra can be compared with the
ones presented by (Garg et all (2007). There the quasiparticle excitation delta peaks are
disconnected from the continuum, which is however an artefact of the approximation for
the self-energy there, whose imaginary part vanishes over too large a region in w. As
mentioned, in the BEC limit (right) the effective mass mp of a boson pair mp ~ U. This
can be seen reflected in the small effective band width for the case U = 6. In this case it
is not related to the quasiparticle weight z, which assumes values close to one. The weight
of the peaks in the full spectrum pg(w) is in accordance with the height of the arrows for
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zp%(w). We can see that in the BCS limit (left) the weight in the lower band decreases
rapidly to zero near e = pg, whereas in the BEC limit (right) it spreads over a much
larger region. This can be seen in more clearly in figure B4l where we plot the momentum
distribution ng, = v} calculated from ([BIZ) for = 1 (left) and = = 0.5 (right).
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Figure 8.4: The momentum distribution ng = vy calculated from (BIZ) for x = 1 (left)
and = = 0.5 (right).
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In both cases (z = 0.5,1) for small attraction (U = 1) we can see that ng shows the typical
form known from BCS theory dropping from one to zero in a small range around € = pyo.
Therefore, some momentum states above g are occupied, but only in a small region of
the order of the gap. When U is increased, the momentum distribution is spread over a
larger range. In the BEC limit, where the fermions are tightly bound and therefore very
localised in position space, we expect the momentum distribution to be spread due to the
uncertainty principle. In all cases the sum rule 1/N )", ng = x/2 is satisfied numerically
within an accuracy of about 1%.

To summarise, we have discussed the behaviour of attractive fermions in the Hubbard
model from weak to strong coupling at 7" = 0 with the DMFT-NRG approach. We found
a smooth crossover of the relevant response quantities, expectation values and the spectral
functions. The description in terms of non-interacting renormalised quasiparticles could
on the whole represent the results of the full DMFT-NRG calculation well.



Cuando estes triste, ponte a cantar,
cuando estes alegre, ponte a llorar.
Cuando estes vacio, de verdad va-
cio, ponte a mirar.

Jaime Sabines

Conclusions

A number of different topics in condensed matter theory have been addressed in this thesis,
ranging from Kondo physics in quantum dot systems with normal and superconducting
leads over magnetic order in lattice models to superfluidity for attractive fermions. Before
putting the scientific contributions into perspective let us recapitulate on what has been
presented.

After the description of the relevant models (AIM and Hubbard model) and methods
(NRG, RPT and DMFT) in the first part, we have studied the AIM subject to certain
types of symmetry breaking. We saw that the low energy quasiparticle excitations and
the response of the AIM to a magnetic field could be characterised well in terms of field
dependent renormalised parameters. In an RPT expansion based on these parameters dy-
namic correlation functions could be deduced, and they were in good agreement with NRG
results for a significant range of frequencies. This approach was shown to be generalisable
to the non-equilibrium situation where the RPT is carried out in the Keldysh-formalism.
It could be used there to calculate the non-equilibrium differential conductance in quan-
tum dot systems in a magnetic field. Thus, we have presented a reliable description of the
AIM in magnetic field in equilibrium with NRG and RPT, and a promising possibility for
the non-equilibrium situation in the RPT framework. For the one-particle quantities in
both the equilibrium and non-equilibrium case, however, a more thorough analysis of the
RPT approach is necessary to understand, what the most important processes are up to a
certain scale, in frequency w, magnetic field h, and voltage eV. Also the treatment of the
counter-terms for the renormalised self-energy, when summing diagrams to infinite order,
has not been completely satisfactory from a formal perspective.

For the AIM with superconducting symmetry breaking in the bath we gave a thorough
description of static and dynamic properties deduced from NRG calculations. This included
the ground state transition from a singlet to a doublet state with varying interaction or level
position. We presented detailed results for the position and weight of the localised excited
state in the gap, the Andreev bound state. These quantities could also be calculated from
a renormalised parameter analysis based on a low energy expansion of the self-energy. As
the system is not a Fermi liquid we could not readily extend the method of extracting these
renormalised parameters from the NRG low energy excitations. This might, however, be
possible when a more general form of the excitation is considered and can be subject of
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further research.

For the lattice model in a homogeneous magnetic field in the third part of the thesis,
we showed that the methods applied to the local model could be extended. We were able
to deduce renormalised parameters for the quasiparticle description and to calculate the
dynamic susceptibilities in an RPT expansion. We also presented a thorough analysis of
different types of qualitative behaviour of the strongly correlated electron system in a mag-
netic field. This includes the phenomenon of metamagnetism, which occurs at half filling
and intermediate coupling strength. Away from half filling no metamagnetic behaviour was
observed, but renormalisation effects near half filling are strong and the spin dependent
effective masses of the quasiparticles differ markedly.

The last two chapters dealt with spontaneous symmetry breaking. We analysed in
great detail the properties of the quasiparticle excitations in a metallic antiferromagnetic
state. Renormalised parameters could be deduced as before, but the symmetry breaking
nature leads to expressions for the spectral quasiparticle weight and the effective mass
enhancement different from the ones in the normal state, where they are just given by the
inverse of one another. Therefore, the quasiparticles in the doped antiferromagnetic system
can have a rather large spectral weight and at the same time a large effective mass. This
can be understood physically from the hole motion in an antiferromagnetically ordered
state. For the corresponding attractive system we studied the broken symmetry state with
superconducting order. We showed that the crossover of static quantities and spectral
functions from the BCS superconducting regime at weak coupling to the BEC regime of
tightly bound fermions at strong coupling occurs smoothly. We also saw at half and at
quarter filling for any attraction that the static and dynamic properties of the system
can be described in a good approximation by non-interacting, renormalised quasiparticle
excitations. This is not surprising in the BCS limit, but it is remarkable in the BEC limit,
where there is a large spectral gap.

With these diverse situations in mind we can return to the unifying question of the thesis
posed in the introduction: what are the properties of quasiparticle excitations subject to
certain symmetry breakings, and how can they be analysed. Clearly, the properties of the
quasiparticle excitations in local and lattice models of strongly correlated fermions differ
with the kind of symmetry breaking occuring. For instance, the local system remains a
Fermi liquid for any magnetic field applied, whereas the ground state of the lattice model
can be insulating. We have shown, however, that a description in terms of renormalised
parameters, which can be obtained from the one-particle self-energy, and in some cases also
directly from the low lying excitations, is possible in all cases dealt with here. This is very
important as it allows us to formulate a simplified description in terms of non-interacting
renormalised quasiparticles, which is valid as a first approximation. It is remarkable that
this is not limited to the cases, where the system is strictly a Fermi liquid, but also works
for cases with symmetry breaking. This suggests that the RPT approach is extendable
to a larger class of systems, and it has already been proven to be useful for the lattice
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models in chapters 6 and 7. This gives an exciting prospect, but we have to bear in mind
that the work carried out for the lattice models is exact only in the infinite dimensional
limit. Therefore, the work presented is only a piece in a much larger puzzle, which provides
certain links and insights but requires future work in many directions. We will mention
but a few in the following.

The NRG calculations for the AIM in magnetic field give a rather complete picture.
More work is needed to understand the details of the RPT approach both in equilibrium
and non-equilibrium. This includes finding good perturbative approximations as well as
a satisfactory treatment of the counter-terms. A self-consistent approach with dressed
quasiparticle propagators, as sketched in the appendix [CC3] gives a promising route to fol-
low. The AIM in a superconducting bath at and away from half filling is well understood
from calculations with the NRG methods by this and other groups’ work. A better under-
standing of the low energy excitations in terms of renormalised quasiparticles would be of
interest. Moreover, an extension of the analysis to the situation with two leads with dif-
ferent complex gap parameters, Josephson currents and non-equilibrium transport, would
be of considerable interest for theory and experiment.

As for the lattice models, many future avenues of research can be envisaged leading
on from the work presented, and we can only hint towards a few. For instance, the effect
of phonons in doped antiferromagnetically ordered state is of considerable interest in the
condensed matter community as it can be relevant for the understanding of the behaviour
of materials of strongly correlated electrons, for instance the cuprate superconductors. Also
ordered states in more complicated models than the Hubbard model, e.g. with coupling
to a localised magnetic moment, would be of great interest. The attractive model with
superconducting order also deserves more attention. A DMFT-NRG treatment taking
into account the full self-consistency equations needs to be carried out. Apart from the
model with on-site attraction, strongly correlated models with a competition of on-site
repulsion and a coupling to local phonon mode, like the Hubbard-Holstein model, with
superconducting ordering could then also be addressed. This would be of considerable
interest for the phenomenon of superconductivity in fullerides. These suggestions do not
comprise an exhaustive list, and many other studies could be proposed.

The final conclusion at this stage is the hope that in the same way as this work has
built on and benefitted from many earlier studies, its insights may serve as a fruitful basis
for future research on strong correlation effects in condensed matter physics. After all, as
George Bernard Shaw puts it, it is in the nature of science that it never solves a problem

without creating ten more.
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Appendix A

Spectral functions in the full density
matrix (FDM) approach

In this section of the appendix we give details for the full density matrix approach to
calculate spectral functions in the NRG based on the Anders Schiller basis. We derive
explicit expressions for the reduced density matrix and for dynamic response functions.

A.1 General expressions

Before deriving the general expressions for a correlation function, let us first we establish
a few general relations. The starting point for the following considerations is the complete
Anders Schiller (AS) basis for the NRG chain (Z20),

{]l,e; m>}m:m0 ..... N- (Al)

The unit operator can be then expressed as follows

N

1= Z Z]l,e;m><l,e;m\. (A.2)

m=mo l,e

Also the following relation for discarded (1) and kept part (k) can be found (Peters et all
2006),

N
Z Z]l,e; m){,e;m| = Z\k, e;my)k,e;my |. (A.3)
m=mi1+1 l.e k.e
Our aim is now to express the one-particle Green’s function in terms of the AS basis
employing the concept of the reduced density matrix. First we consider generally for

operators A, B,
tr(pA(t)B) = tr(petft Ae~ 1 B). (A.4)
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This is evaluated as

tr(pett Ae=HiB) = Z<l,e;m|ethAe_thBp|l,e;m)
l,e;m

= Y D (s ersmale™ Aem iy, e9;my) (l2, €2;ma| Bplly, ex;ma )

l1,e1,m1 l2,€2,m2

Now we divide the sum over msy into three parts: ms > mq, mo = m; and mo < my.
Equation ([AZ3)) can be used to write the part mo > my as

tr(pet Ae B, o, = Z Z (1, e1;m|ett Ae ™k ey m) (k, ea; m|Bpl|l, e1;m).

m lelkeg

(A.5)
For mg < mj we rearrange the summation according to
mi1—1
Z Z f(ma,ma) Z Z f(my,my). (A.6)
mi1=mg+1ma=mo ma=mo mi=mz+1

Using ([AZ3) we find then a similar term as in equation ([AF), but kept and discarded states
are interchanged,

tr(pe™* A M By cmy =Y Y (I, e2;m|Bplk, er;m)(k, er; mle™" AeT |1, e, m).
m le1 k ,e2
(A7)

If we collect all these terms we obtain the following expression trace

tr(petft Ae=HiB) = Z Z (I, er;m|et Ae |1y en;m) Iy, ex;m|Bp|ly, e1;m)
m li,e1,l2,e2

+ > ) (l,ex;m|Bplk, er;m)(k, er;mle™ Ae |1, e, m)

m ley,k,ez

+ Z Z (1, e1;m|e’ 't Ae ™tk eq;m) (k, ea;m|Bp|l, e1;m).

m ley,k,ez

(A.8)

By definition of the AS basis|k, e;m) and |I, e;m) are exact eigenstates of the Hamiltonian
at stage m, Hy,, Hya,e;m) = ESa,e;m). The approximation which is made in order
to evaluate the expressions is that they are also eigenstates to the Hamiltonian of the full
chain H = Hp, which amounts to saying that the effects from further environment sites,

which due to the NRG setup couple with decreasing energies are only a small perturbation,
Hla,e;m) ~ EX|a, e;m). (A.9)

This can be used in the expressions ([A-8) above. We also assume that for zero temperature
due to energy scale separation the density matrix can be given directly in the diagonal basis

at the last iteration
e BNEN

p= Z LN N, (A.10)
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Here we can take By ~ AN?2 and Z = > e PNEN. As a consequence, dl,e;m) = 0
for m < N, since the states are orthogonal. Therefore, only the term in the second
line in equation ([A8) contributes. Terms with kept states at step Npax vanish, since by
definition of the AS basis there are none. Taking into account the commutator term in
the definition of the retarded Green’s function [Gap(t) = —if(¢t)tr(p[A(t), B]:) (¢ = —1
bosonic e = 1 fermionic)| and collecting the above the results the general Green’s function
GAB fdt eZWtGAB( )

S Biyiy (m)piest (m) Ay, (m) 4 € Ay, (m) iS5k (m) Biyy, (m)
w— (B} — ER)

Gap(w
m 1y,l2,l3
P YT Blk1 )Piek, (m )Akzl(m)+€Alk1( m) ph, (m )Ble(m)(

—(EL — ER?) w— (Ent — EL,)

A1)
m Lk ks

The m-summation runs from mg, where the truncation starts to Npy.x. We have used
<l1,61;m|A|l2,62;m> — 661,62A1112(m)5 (A]'Q)
and the definition of the reduced density matrix

Pt (m) = (k1, e;mlplks, e;m). (A.13)

e

Since gl,e;m) = 0 for m < N the term in the first line only contributes for the last step
N and then, since p is diagonal there, takes the form

L l
L5~ Ay (V) By (N) (052 + e85

(1) _
Capl) =7 w— (B2 B

(A.14)

l1,l2

A.2 Details for Quantum numbers (), S.

In the following sections we give the explicit expressions for the matrix elements appearing
in the calculations, when ) and S, are good quantum numbers. We describe how to cal-
culate the reduced density matrix, the one-particle Green’s function and other correlation
functions. When different quantum numbers, e.g. ) and S, are used, the expressions are
different due to the reduced matrix elements and Clebsch Gordon coefficients, which are
usually used (Bauer 2007).

A.2.1 Reduced density matrix

In this section we will give the expressions for the density matrix in terms of matrix elements
and transformation matrices for the case where @, S, are good quantum numbers. Let the
density matrix of the step N, which is not necessarily the last iteration, be given by

pv= D> 1Q.Sern)N WN(Q, Sesrn, ) M@, Sey iy |. (A.15)

’
QaSZ7TN7TN
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We start at N = Npax with a diagonal p such that
e_ANEN(QVSZ?TN)

WN(Qasz;Terﬁ\f) = 57"]\7,7"]\7/ 7 ) (A16)
N
Zxn = tr(e ) and Ay = A7
The usual basis transformation in the NRG is given by (Bauer 2007)
1Q, Sz, NN =D Ugs. (rnsrv—1,1)@Q, Sz, rv—1, i), (A.17)
where i = 1,...,4and ry = 1,...,4rny_1. Define the Fock basis for site IV on the linear

chain as|Jy) (Jy =1,...,4) with

Lv) =0n), 128) = fLJON), [3n) = £l JOn). [4n) o= L S Jon). (A1)
The basis for step N and N — 1 are related by

1Q, S, rn—1, )N = |Q+ 1,5, rn_1)N—1 ®|1N), (A.19)
1

1Q,S.,rN-1,2)n = |Q,S: — 577"N—1>N—1 ®|2n), (A.20)
1

|Qa SZaTN*1)3>N = |Q7 SZ + §a7ﬂN71>N71 ®|3N>a (A21)

|Qa SZaTN*1)4->N = |Q - 15 SZaTN71>N71 ®|4N> (A22)

The first step is to substitute (A7) into (ATIH),
PN =2 WN(Q,S:rn, Ty Uqgs. (rnsrn-1,1)Uqs. (ry; Tv_1,5) X (A.23)
X‘Q,SZ,TN_17i>N<Q,SZ,7"AI]\771,j ’

The reduced density matrix for step N — 1 is then found by the partial trace
4

pn-1= Y (Inlpn]IN)- (A.24)
Jn=1

This is evaluated by substituting (A23)) into (A24) and making use of (AT9)-((A22).
This yields

pN-1= Y |Q,Seyrn-1)N-1 WN-1(Q, Sz5rn—1,7—1) N-1(@s Sz, Ty 1 | (A.25)
with
WN-1(Q, Sz37N-1,7y_1) =
> (UQfl,Sz (rvirv—1, DWN(Q = 1,83 mn, v )Ug-1,5. (Tvs Ty -1, 1)

NN
1

+Uqgs.11(rvirN-1, )W (Q, S + §Q7AN7T§V)UQ,SZ+%(T§V§T§V717 2)
1

+Uq.s.-1(rnirN-1,3)Wn (Q, S: — §§TN7T§V)UQ,SZ—%(T§V§TEV7173)

+Ug+1,5. (rN; =1, DWN(Q + 1, S5 7N, N ) Ug+1,5. (PN TN —1, 4))'
(A.26)
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A.2.2 Expressions for the dynamic correlations functions

We give the relevant explicit expressions for the one-particle Green’s function. The starting
point is the Green’s function in the general form (A1) and we use A = Cio = BT, Let
us deal with the term in the first line in ([A_T1]), where we directly take the representation
AT4). We use |l1) —|Q — 1,5, — 0 /2,1;) and|ls) —1Q, S,,[2) and find

(), ) 1= (@ 8sbalel,|Q = 1,5 — 0/2, ) [P(emPP@1S o 2h) 4 e 0R(@ 5 0))
G, (w)=—= Z
d,o 7 w—[E(Q,S,,l2) —E(Q—-1,5, —0/2,11)]

l1,l2

(A.27)
Then we focus on the terms in the second line in ([AT1]) and look at the expression at a
specific iteration m < N and

Sy [eh i (m) 935, (m) e Vi () [Cd,g]zm(m)pi‘i(}@(m)[cz,g]kgz(m).

(2),m
Gaa w— (EL, — ER) w— (BN — EL,)

g
l,k1,ko
(A.28)

Let us consider the first term, which describes positive excitations between discarded
(higher) energies and kept (lower) energies. We omit the m index for the iteration and write
for the discarded states|l) —|@, S, ). The kept state|ky) is written as|Q — 1,5, —0/2, k1),
whilst |k2) becomes |@Q — 1,5, — 0/2, k). Therefore, the coefficient can be written as

<Q,Sz,l\cjl7a\Q - 1,8, —0/2,k))W(Q — 1,8, —0/2; k1, k2)(Q — 1,5, — 0/2,kalcy ,|Q, Sz, 1) =
(Q. 8=, 1lch ,|Q = 1,8. — /2, k)W(Q = 1,8. — 0/2: ki, k2)(Q, Sz el ,|1Q — 1, 8. — 0/2, ko)”

where this termed is summed over k; from 1 to rg(Q — 1,5, — 0/2), the corresponding
range. We denote this expression including the summation by a, (@, S;(, k2). The whole

term can then be written as
rg b o
5 g—i(? : 0,(Q, 5211, k)
w—[F(Q,S,,l)— E(Q-1,8, —0/2,ks)]’

@,z k2 I=rg(Q,Sz)+1

(A.29)

where the range before the truncation rg bt(Q, S.) was used as summation limit. The
second term in equation ([AZ28), which accounts for negative energy excitations, similarly

has the form
Z rg_%vsz) ar(Q+1,S,+0/2;1, k1)
w—[E(Q+1,S: +0/2,k) — E(Q,S:,1)]’

@8z k1 1=rg(Q,Sz)+1

(A.30)

with a,(Q + 1,5, + 0/2;1, k1) given by

(@, 82, 1eq |Q+1,8: +0/2,k)W(Q+1,S. + 0/2 ki, ko) (Q + 1, 8. + /2, kach Q. Sz, 1) =
<Q + 17 SZ + 0/27 kl ’CLJ‘Q’ SZ? l>*W(Q + 17 SZ + 0/27 klv k2)<Q + 17 SZ + 0/27 kQ’C;J‘Q7 SZ? l>
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The higher F-Green’s function, defined by

Fy(t) = —if(t){{[cancl _oca_o)(t).cl}), (A.31)

can be obtained starting from expression [ATI)) in a similar way using A(t) = [c; ,n—o](t)
and B = CTU (Im M) In analogous way, the longitudinal spin correlation function,
given by

xi(t) = —i0()([S:(1), S2]), (A.32)
is found. We can set A = B = S, and use the Green’s function in the form ([ATIl) with
¢ = —1. Similarly, with A = B* = ST the transverse spin correlation function can be

calculated. For details we refer the reader to (Im ).



Appendix B

Renormalised parameters from NRG

calculations

In this section we describe how renormalised parameters can be deduced from the excita-
tions in the NRG calculations. We want to discuss the general case, which is valid for the
impurity models in part 2 (chapters 3 and 4) as well as the lattice models in chapters 6
and 7. We start by considering a more general form of the linear chain Hamiltonian (ET]),

including the impurity but without the interaction term. It is denoted by HELN,

N N
HO, y = AN-D/2 Z EnCh Oy + AN D/2 Z Bro(Ch gtnire +he).  (B1)

)

on=—1 on=—1
Here 3, , are the spin dependent hopping elements and on-site energies €, , of the linear
chain. We defined 81, =V, and e_1, = €4,. For the DMFT situation with magnetic
symmetry breaking the medium can become polarised, which implies that the complex
hybridisation function K,(w) is spin-dependent. Therefore we need to include a spin-
dependent hopping amplitudes 3, , as well as on-site energies €, ,. They can be obtained
from Ay (w) = ImK,(w) in a procedure described in [Bulla_et all (1997).

First we would like to derive the Green’s function for this linear chain model. For a
certain iteration N denote the linear chain model from site i to N by HgN, 1=0,1,...,N.
The Green’s function at the impurity site can by written in matrix notation (—1|(w —
HELN)_1| — 1) and related to other matrix elements depending on HZ?N by a recursive
procedure (i) = f§|vac>). In order to find this explicitly one needs to consider the inversion
of the corresponding band matrices. Taking all factors into account one obtains the non-
interacting Green’s function for the linear chain model

1

G? = B.2
,171((-4)) W — €d7o-A(N_1)/2 - VogAN_lgo()’o—(CU) ( )
where g;; () is the Green’s function for site i and expressed as
1
gn',a(ﬁ) = (B.3)

e =i ANV = B2 AN gi 11 0(c)
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Note that the Green’s functions correspond to matrix elements gj; »(w) = (i|(w—H2N)_1 7).
As usual one-particle excitations F, are given by the poles of the Green’s function and
hence by the equations (o = +1)

Ey —eqo AN "D/2 _V2AN=Lg00 (E,) = 0. (B.4)

For a certain iteration IN denote the single particle excitation from the ground state for
the non-interacting system by E) (N) and the hole excitations by E27U(N). For the hole
excitation we have to include a negative sign for the energy and also the opposite spin
corresponds to the value for the excitation, such that equation (B4l gives in a slight

rearrangement
E),(N)A-(=D72 g (N=1)/2 0
V2 - W =A gOO,U(Ep,J(N)) (B5)
and 0 (N—1)/2
—E) (N)A=W— Ed—o -
. — T = AN g0 o (— B}, (V). (B.6)

7z VZ
We see therefore that the up/down spin hole excitations EY H(N)/ E? | (V) are related to
the parameters €4/ €41, respectively.

This analysis of the non-interacting problem can be extended by switching on the
interaction U. The aim is to determine the renormalised parameters £, and ‘702 for the

quasiparticle excitations (IHﬂMSQ.U_&t_a.]J |2.O_0_4‘) As above, for a certain iteration NN, but

now for the interacting system denote the single particle excitation from the ground state

by E, () and E}, »(N) in analogy as hole excitation. The N-dependent free quasiparticle
parameters £4,(N) and V,(N)? are then in analogy to (B) and (B given by

Epo(N)A-W-D2 g5 (N)
VZ(N) V2(N)

[

= ANVTD 2505 (Ep o (N)) (B.7)

and
_Eh,J(N)A_(N_l)/2 éd,—O'(N)

V2,(N) 2V2,(N)
Note that E,,(N) and Ej ,(IN) are obtained numerically at each NRG step. The low
energy renormalised parameters £, AJ are then defined by €4, = imy_.o0 €40 (IN) and

= A<N71)/2900,70(_Eh,J(N))' (B8)

A, = limy_ o0 Ay(N). In practice for most cases, for A = 2 a number of iterations
Nmax =~ 50 is sufficient to determine the renormalised parameters accurately. We can give
an explicit equation for A(N) by subtracting the two equations above
Epvﬂ(N) + Eh,—O'(N)
900,0(Ep,o(N)) = 900,60 (—En,—o(N))

and from this £;,(N) is easily determined in (B).

V2(N) = A~V

g

(B.9)
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We can also determine the local quasiparticle interaction U from the NRG results. The
idea that helps to find it is to notice that it must be related to the difference between a two-
particle excitation and two one-particle excitations. Having determined the quasiparticle
parameters £;, and f/d7(7 via the procedure described above, we can give the free quasi-
particle Hamiltonian [([CI2) without U] in the linear chain form. It can be diagonalised

numerically and written as

(N+2)/2
N-1

HO' =A""2 Z (Ep,k,ap;rcppk,a + Eh,k,ah};,ghk,a) (BlO)
k=1

where py » and hy , are particle and hole operators, respectively. All terms involve a spin
label o, but no mixing of opposite spins occurs. Therefore, we can diagonalise the two
spin components separately. We denote the energetically lowest one-particle excitation by
E, 1., such that E,, , = E, , (see above), and similarly for the holes. In order to relate
the quasiparticle interaction term with U [cf. eq. (CIZ)]

Hoping = UAN"V/2  dldydld, - (B.11)

to the one-particle and two-particle excitation ngl, which are calculated numerically in
the NRG, we have to use inverse of the basis transformation to the eigenstates in (BI0)

(N+2)/2
do= > [WUpko(—DpPro + Ynp—o(-1)h] _,]. (B.12)
k=1

Then the corresponding to Ugfl particle particle term is

dididld) ~ Y U kg (Dt (D k(<D (D)PL, 1PRa P, Pt
k1,k2,k3,ka

(B.13)

If we only take into account the single lowest one-particle excitation E, 11 and Ep 1| (k1 =

ko = ks = kqy = 1) and the two-particle excitation ET’l(N) the renormalised interaction
0]IIQL(N) is seen to be inferred from )

ELHN) = By 1(N) = B (N) = UM NAN D2 g (<) s, (-1, (B.14)

In a similar way we can look at particle-hole excitations E;,’J (a hole T excitation cor-

responds to a particle |-excitation) to find an equation for the effective quasiparticle-

. . . =11
quasihole interaction Uph

2

r 7 — * 2 *
ELNN) = Epy(N) = Epp(N) = ULTNANTD2 |y (=0 |wh (<D, (B.15)
and also for hole-hole excitations
~ _ " 20 % 2
Byl (N) = By (n) — Epp(N) = Ol (VAN D2 g (D)7 [0 11 (=1)] (B.16)

For large N these quantities are seen to converge to a certain value which is found to agree.
We can therefore identify U = Ug;?l = —UJI’J = Ui;}.






Appendix C

Renormalised Perturbation Theory

In this part of the appendix we give a few more additional details for the RP'T approach.
First, we give a proof that the theory is well defined order by order. Then we outline an
alternative formal description, which could form the basis for calculations in the equilib-
rium. We also describe the formal setup of a self-consistent theory based on the Luttinger
Ward functional approach. In the last section we give details for the extension of the RPT
to the the non-equilibrium case.

The generating functional for the renormalised perturbation theory is given by equation

222),

o) o

Zr[J] = /D(d’" . Ye~ Sl dg)=S°ldydy 1= S ld5 o] (C.1)

The renormalised parameter action S” is given in the earlier equation ([ZZ3), the action
for the counter-terms is given in (ZZ3) and the one-particle irreducible (1PI) source term
is defined as in (Z47)). This was used to generate the perturbation theory as in equation
EZ22). First we give a proof that the RPT approach can be carried out order by order.

C.1 Proof for the feasibility of the RPT approach

We want to prove generally that a renormalised perturbation theory as defined by (CI)
can be carried out order by order. We need to prove that the renormalisation conditions
&20) and (ZZI) can always be satisfied. This proof is carried out by induction. As a
preliminary it is helpful to classify the contributions to the proper self-energy into three
different types, as done before in the main text:

e (a) terms X (iw,) coming purely from AIM interaction term e 50. They correspond
to the diagrams in the standard perturbation theory of the AIM.

e (b) terms coming purely from e, which correspond to trivial counter-terms which
can be collected to a self-energy contribution % (iw,) = —[A1 + Aaiwy].

s —S§\3.

. i . . . —ST
e (c) mixed terms X3 | (iwy,) generated by the combination e 56, 75 and e
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The perturbative renormalised self-energy to order n is given by
S0 (iwy,) = Z [ZE(km (twn +Z ;\n;x/\ik)\gn (iwn) | + X% (iwy), (C.2)

where (™) denotes the mth diagrammatic contribution to the self-energy of order k. We
have omitted the spin index for notational simplicity.

In order to classify different orders of the perturbation theory it is useful to think of

the counter-term parameters as expanded in U )
A=Y ATk, (C.3)
k

(n)

Then for each order of the perturbation theory we have to determine the coefficients \;
in this expansion, such that (Z40) and (ZZI) are satisfied, whilst all mixed terms for
the renormalised self-energy are included. Note that the mixed terms for a diagrammatic
contribution to order n have generally a prefactor of the form

3 n
_mot> > mil{™ 3 ) (m)
U i=1m,=1 H()\Emz))li ’ (C.4)

i=1

where lgmi) € Ny has to be chosen such that it gives the number of times a counter-term
contribution of type i of the order m; in U appears in the diagram; mq gives the order
from the standard AIM perturbative expansion in U corresponding to (a). For a diagram

of order n we need to have the condition

3 n
mo + Z Z mill(-mi) =n (C.5)

=1 m;=1

Note that lz(n) = 0 for i = 1,2, and therefore to order n the terms )\(1”) and )\gn) only appear
in the last term X< in ([C2).

Similarly, we can classify the different contributions to the full renormalised vertex
at zero frequency I'(0), where we use a simplified notation here. We have terms fU(O),
such as in (a) above, which come from e 50 only. For later convenience let us take the
first order term, which is just equal to U, separately. We also take the equivalent term
for A3 separately. As in (c¢) above we have mixed terms from original and counter-term
contributions, which we denote by ~T117X>\2’/\3 (0). They will generally have the same prefactor
as in (C4)), but here we have m; € [0,n—1] for i = 0,1, 2,3, since we have taken out the U
and A3 term. The full renormalised vertex at zero frequency to order n > 1 is then given

by

n

TOO) =T+ M+ [Z )+ Z T Em ] , (C.6)

k=2 m
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where similar to the case of the self-energy I'®*™) denotes the mth diagram of order k.
This is all the notation we need in the following.
To prove the induction step, n —1 — n, we will assume that for an RPT to order n —1

k)

in U all constants )\E , k < n have been determined such that the renormalised self-energy

and vertex satisfy the renormalisation conditions, i.e.,

~ 0
(n—1) _ (n 1) _
x (0) =0, am (lw=0)=0 (C.7)
and
=) =U. (C.8)

Now for order n one has to determine all diagrams of type (a) and (c) for the self-energy
and vertex. These quantities to order n are then given by equation ([(C2) and (6,
respectively. The renormalisation condition for the vertex [ZZI]) reads

0+3 AP0k [ngﬁm )+ er;;lj;%g ] 0. (C.9)
k=1 k=1 m

Note that only the second term contains )\(3”) and no term here can contain )\(1”) or )\(2n).
Now, according to the assumption of the induction, the counter-term parameters )\Ek)
k < n have been chosen such that (8] is satisfied, which implies that all terms with

k < n vanish. This yields the equation
n)rn =(n,m) mix,(n,m)
0"+ [ SO +ZFA1 s 0)] = o. (C.10)

All parameters entering the second and third term in this equation have been specified for
k < n and thus (CI0) yields a unique solution for )\gn), provided that all diagrams have
been evaluated. Similarly, we consider the first condition for the renormalised self-energy

E&20), which reads
0=3%0" Z [Zz’“’" SR )] + Yo APk (C.11)
k=1

Note that the mixed terms do not contain )\(1”) or )\(2n), but they can contain a term with

for

)\gn), which has been determined from (CI0). According to the induction assumption
terms for k < n are chosen such that () is satisfied, and therefore all terms for k < n
cancel, which leaves us with

0= 250+ Z S (0)| + AT (C.12)

(n)

This uniquely determines A; . A similar argument holds for the second part of the renor-
malisation condition (ZZ0) to determine )\én), which concludes the induction step. For the
proof it only remains to be shown that the case n = 1 can be satisfied, which we have
illustrated as one of the examples in section We can therefore conclude at this stage

that it is possible to carry out this RPT to any given order n.
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C.2 Alternative Setup for the RPT

We gave a formulation of how to generate a perturbation theory based on taking all counter-
terms as interactions in chapter 2. A different formulation will be illustrated here, where

terms of similar kind are collected. Starting again from (CJ) we can reformulate the theory

slightly,
] = / (7, @Yo~ S0l T\ =Sy =S5l o= S5 [ To=Suldyd) (o 3
oS04 319708 JU]/D (dr, d) o Sb 15 0] =S5ld5 d51=S 1d5 @) (C.14)
= o Syl Tl zr g (C.15)

We have collected the interaction terms corresponding to U and A3 as they are of iden-
tical form, and did not treat the free counter-terms as interaction terms. The Gaussian

integration gives similar as before

8 B _
- >, fdr far’ Jo(T)GG xy 2 (T=T) o (T')

Zi I =e o o , (C.16)
where
G (T =7) =[Gg ' (r =) + (G (r — )] 7 (C.17)
The free counter-terms are included in the propagator, which now takes the general form
1
G’ —tTwn . C.18
U/\l,)\z 5 Z € Wy — Edo — K7 (iwy) + A1 + Agiwy, ( )

As can be seen from the generating functional ((CI3) the perturbation expansion is easier
now consisting only of the terms, which were mentioned above under (a). These are the
terms of the standard perturbation theory for the AIM. We denote these terms, which
through the propagator depend on the counter-term constants by E(U+/\3)(iwn,)\1,)\2).
The Dyson equation for this setup reads

Gd,o—(iwn)il = Ggo(iwn)il — E(U+>\3)(iwna A, )\2). (C.lg)

Comparing with the earlier Dyson equation we can identify the renormalised self-energy
in this scheme as
E(iwn) = E(U+)\3)(iwn, )\1, )\2) — )\1 — )\inn (C.QO)

and the renormalisation conditions (Z40) become self-consistency equations

and
6

Ao = ——
2 Biw
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The renormalisation condition for the vertex remains the same (Z40) taking into account
that all propagators are given by ((CI8) and the interaction is U+ As.

Although such a setup at first sight appears promising due the much simpler structure
of the perturbation expansion it turns out that it is difficult to carry out the expansion in
this form. We had seen that the counter-term parameters include contributions to different
order [cf eq. (C3))]. The setup defined by (CIH) and the free propagator ((CI8) implies
that counter-term contributions to all orders are included even in the low order diagrams
discussed in the last section. They could be expanded again in orders of U, but that is
like going back to the earlier section, or one has to devise a consistent way of including
diagrams to all orders with these counter-term contributions. It turns out that these can
in fact be done better in a frame work where also the renormalised self-energy is included
in the propagators, or in other words the expansion is carried out in terms of the full
propagators. This is then necessarily a self-consistent theory. The natural formalism for
such an approach is the formulation in terms of a Luttinger Ward functional and the 2PI

scheme, which will be described in the following section.

C.3 Functional integral description in the 2PI formalism

The generating functional for the renormalised theory in the two-particle irreducible (2PT)

scheme is given by
/D (d, @ Yo" s ) =e1dy 3,13 ;). (C.23)

with the renormalised action S™ as in equation (ZZ43]) and the action for the counter-terms
as in (Z40). The difference to the earlier case is the source term, which is defined by

B
Z/dT/dT d, (TN (7,7 )0/ (T1). (C.24)
a0’
We can define a generating functional for connected Green’s functions,

W'n] =log Z"[n]. (C.25)

The connected n-particle renormalised Green’s function is obtained via

2n r
r,(n) / / n a4 [77]
;o (W, W, wy,) = C.26
01,...0n;01,...0n( 1 1 ) C 57]011701 (wi, wl) - (577%70”(0.)%,0_)”) o ( )
We can write
owr — —
@ )y = A @) (N = G (), (C27)

B Mot (W', w)
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by which the generalised Green’s function G, o (w,w’) is defined. It is suitable to perform
a Legendre transform to a new generating functional I'"[G"],

rr [GT] = Z GZ’,O” (iwn’ iw;’b)nﬂ,ﬂ’ (iwnv waiz) -wr [77]7 (028)

whose natural variable is G _, (iwy,, iw;,). This functional generates proper vertex functions

(Il}hﬁgﬂ]_e_a.n_dﬁda.nd I]_%_d) By functional differentiation we find

e ,
o) | 2
5wy o) (€29

For a non-interacting theory, U + A3 = 0, we can give an exact expression for the
generating functional T'%"[G7], since the integrals are Gaussian and can be carried out
exactly. We find,

LG = Y [log Gy gliwn,iwy) + 1 = ([GE°(iwn)] ™ + (G5 (1wn)] ™) Gl g1 (iwn, i), )].

- (C.30)
Note that
(SFT,O[GT] r . . -1 0/ 1 oy .
5CT  m i) (G o (1w, iy, )]~ = ([GF (iwn)] ™ 4 [Ge° (iwn)] ). (C.31)
In the interacting theory we can express the effective potential as
I[GT) = T[6) + #7[6), (©32)

with an additional functional ®"[G"], which turns out to be the Luttinger Ward functional

PTG (Luttinger and Ward 1960, [Abrikosov et all [1963). Tt is well known and can be

expressed diagrammatically in terms of closed skeleton diagrams. Its functional derivatives

yield self-energy and irreducible vertex functions (IAble.Qsmuit_a.]J I].Q.ﬁd) Note that the

expansion is carried out with the effective interaction Uy = U 4 A3 as expansion parameter

as the interaction terms of the same structure have been collected again.

In this approach the renormalised Green’s function is a variable. The physical Green’s
function, which corresponds to the stationary point of the functional I'"[G"], when the
source is zero, satisfies the Dyson equation, which for the renormalised theory reads,

£, (iwn) = (G iwn)] ™1 = (Gl g im, )] (€.33)
In the stationary state invoking n = 0 in equation ([C23)) we find therefore using (C31))
that the renormalised self-energy Y, (iwy) is given by

e

— _ c,0/, -1
= i) (GO (i) (C.34)

ig(iwn)

Note that explicitly we simply have [GS”(iwy)] ™! = Ajiwn + Ao
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We can now give the renormalisation conditions (ZZ0) and (ZZI) in terms of the
Luttinger Ward functional ®"[G"]. The equations (Z0) for the renormalised self-energy
read

307G ot
S0~ G501 =0 (C:35)

and o, oer[Gr
o= <W£w]zw) - [G;O(m)]—l) —0. (C.36)

n=0,w=0
These equations determine A\; and M. It is convenient to define the self-energy X7 (iw,,),

which is obtained from the perturbation expansion of ®"[G"],

) 00" [G"]
Y7 (iwy) = . C.37
o (iton) 0G5 (iwp, iwn) ( )
The full retarded Green’s function can therefore also be written as
2
Gg(iwn) =~ (038)

Wn — Edo + iA + Npiwn + Ay — Eg(iwn).

In a self-consistent perturbative approach with ((C38) the self energy X7 (iw,,) depends
on the three renormalisation parameters )\;, and the renormalisation conditions (C33]) and

([C30) are additional self-consistency equations

EQ(ZC(}" = O’ )‘15 )‘25 AB) = )‘2 (039)
and 5
% E;(iwa)\la)\%)\?)‘w:o = )\1. (0.40)

The condition (4T for the vertex has to be found by considering the particle hole
irreducible vertex fph

520(G7]
0GT. (W3,W4)(5GJI oo (wl,LUQ)

03,04

703,0
Ia'13 0';1 (wla w2, W3, (.U4)

(C.41)
n=0

In the particle hole channel this is related to the full renormalised vertex T through the

Bethe Salpeter equation

Fg?’gé (w1, wa, w3, wy) = 103702 (w1, wa,ws,wy) (C.42)

n Z Ias, 4 w1,w2,w3,w2 + w3 — Wl)Ggé (wQ)GQQ(wé + w3 —wi) X

w2,02,04

!
04,04 ¢/ /
X Fgém(w%wQ + w3 — w1, ws,wy).

This equation is represented graphically in figure [C1] where also the assignment of external
frequencies is visible.
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Figure C.1: Bethe Salpeter equation for full renormalised vertex I (box) expressed through
the renormalised particle-hole irreducible vertex fph (circle) and full renormalised Green’s
function G” (double line).

The renormalisation condition (ZZT]) is then given by
[27°9(0,0,0,0) = Iy, (0,0) = U. (C.43)

This equation determines As.

An RPT in this scheme can be specified entirely by an approximation to the Luttinger
Ward functional. From this the self-energy, the irreducible and full vertex can be calculated
in terms of the full propagators and one has to iterate for self-consistency adjusting the
counter-term parameters. Though in principle possible this approach is - even for simple
approximations of the LW functional - difficult to carry out since the calculation of the
full vertex with the Bethe-Salpeter equation is numerically cumbersome. Usually we are
mainly interested in the renormalised self-energy and only really need the full vertex at zero
frequency in order to satisfy the renormalisation condition. Therefore, we are calculating
much more than we actually need in such an approach. A possibility to circumvent this
additional effort is not to calculate the full vertex with all the dynamic dependence, but
rather relate it to the self-energy via a Ward identity. This might be a promising route
for future developments of the RPT, which at the time of writing has not been explored
in detail.

C.4 Non-equilibrium renormalised perturbation theory

Here we generalise the setup of the renormalised perturbation theory from chapter 2 to
the non-equilibrium case, which is the subject of chapter 4. The renormalised parameters
are defined for zero temperature and in the equilibrium limit, e} — 0. The matrix Dyson
equation (EEIZ) simplifies then to an equation for the (——) component,

Grp(@) ' =GO (@) =20 (W), (C.44)
where

GO (W) Ly =W Cdo +ilAsgn(w) (C.45)
and

S (W) = 0(w)EMw) + (1 — 0(w)) 22 (w). (C.46)
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We can therefore focus on the equilibrium retarded self-energy YI¢*(w) [$24V(w) = St (w)*]
and carry out the usual Fermi liquid expansion. As seen in chapters 2 and 3 for the
equilibrium RPT it is useful to include the magnetic field dependence in the self-energy,
which we will do for the following definitions, which essentially coincide with (Z33]) and
&34 with X, (w) — 32*(w) . Hence, with

_ OReXrY(0, h)

Zo(h) =1 om0 (C.47)

the renormalised parameters are given by

Ag(h) = 25 (M)A, Eqo(h) = 2o(h) (a0 + ReXIH(0, h)), (C.48)

The remainder of the self-energy 1" (w, h) defines the retarded renormalised self-energy

S5t (w, ) [f. @33,
S w, h) = 25 (h) 2™ (w, h). (C.49)

The renormalised interaction 0(h) is defined as in equilibrium by the effective quasiparticle
interaction of the problem, which is given by the full renormalised four point vertex function

at zero frequency (EZ37).
These renormalised parameters, which are the same ones as in the equilibrium RPT,

are used for the low energy description of the non-equilibrium systems by replacing the
original parameters. The effective action becomes S = Sy + 5’0 with

s5=3 farfar @odih - aw) (©.50)

—00 —0O0

where () = (d5, (1), d5 1 (1), 5, (t) = do(t)/ /2, and

~(0) - 1 %(0) 1 iw(t—t!
Gt —1) t= o dw Gy o (w) lemiw(t=),
We have ~(0) ~(0),—+
GOy = [ Cag @) Cag (@) (C.51)
d,o G( 73-,4** (w) Ggl(’)()j,‘i"i’ (w) ’

where the matrix elements are given by [cf. (ES])-(EI0)]

w — éd’g - /LAO'(l - 2feﬂ(w))

N(O)vff —

Gio (W) = (0202 1 A2 ; (C.52)
G(O ,*+(w) _ 2/LAO'feﬁ‘(w) (C 53)
d,o (w . §d70)2 + A?, ) .
GO () = 2Bl funlw)) (C.54)

(w—E40)% + A2
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and @El?;’++(w) = —@gg’**(w)*. The interaction term reads
Sp = —U/dt (ngq,— ()ng (t) —ngq 4 (E)ng 4 (1)) (C.55)

The renormalisation conditions for the renormalised retarded self-energy apply in the equi-
librium limit, and are given as in (Z40) and (ZZ1). Generally in the Keldysh formalism,
the retarded self-energy is given by

S (w) = By (W) + S5 (W), (C.56)

In order to satisfy the renormalisation conditions (40 and (ZZT]) we have to include
the counter-term action

s = 3 [afar @ e -y a ) (©57

-0 —
o0
P [dtnly (Ony(0) =y 004 (0)
— 00
= S0+, (C.58)
where the matrix elements of G%° are generally given by G2 (w)™! = )\g‘ﬁ w+ )\?ﬁ .

Gg’aﬁ(w) contains more degrees of freedom than needed for the renormalisation condi-
tions. We will focus only on the relevant combinations for (Z40) and (ZZ1]), and set all
other )\?’ﬁ Zero.

Perturbation expansion in 1PI formalism

The renormalised perturbation theory can be set up in the one-particle irrducible scheme
as described in section The partition function of the model is then written as

2" = [D(dy. @)l 1, (C.59)

A diagrammatic expansion can be generated by including a one-particle (1PI) source term

of the form

s, = % /dt(ﬁ;l,(t)Jg,y(t)—i—h.c.) (C.60)

ov==+
) —00

- ¥ /dt (d.(t) - I, (1) + huc.). (C.61)

The generating functional is generally written as

ZH= / D(dL, d.)e! (5" o @)+ (g @ )45l d)).
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As before one obtains

ST

27J] = Sioing Bro®

Jo,v

[+iS50[81,, .6

Jo,v

lzrin (C.62)

where we have treated all counter-terms as interaction terms. By Gaussian integration we

have

. [ee] ] o ~(0)
i, [dt [dt Jo()Gg , (t—t")Ts(t")
—00 — 00 .

ZplJ] =e

The connected Green’s functions is formally obtained from

2 T
Ga1,a2(t1’t2) _ 1) logZ [J]

1 _ . C.63
e 6‘]017041 (tl)(SJJQ,az (tQ) J=0 ( )

A diagrammatic perturbation expansion is obtained by expanding the exponential functions
as explained in chapter 2 and follows from analogous arguments. One only needs to bear
in mind the matrix structure of the theory, which accounts for the additional degrees of
freedom. We are mainly interested in calculating the retarded renormalised self-energy
(EA). Therefore, we can focus on the combinations AI** = A~ + X\, * for the counter-

terms and in the simplest case determine the value directly by the renormalisation condition

(m?

N =377 (0) + 20F(0) (C.64)
and 5
ARt = % (Xe (w) + EQ’*(w))L:O, (C.65)

where in all those equations we take the limit eV — 0. The voltage dependent renormalised
retarded self-energy is then given by

S w, eV) = B0 (w,eV) + 20T (w, eV) — ALtw — At (C.66)

(e
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