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Abstra
tIn re
ent years the extraordinary behaviour in 
ondensed matter materials su
h as hightemperature super
ondu
tors and heavy fermions has attra
ted mu
h attention. Attemptsto understand it are mostly based on lo
al and latti
e models of strongly 
orrelated ele
-trons. These systems show a ri
h behaviour with states of broken symmetry. In the strong
oupling regime the relevant models are, however, not easy to understand with standardperturbative approa
hes. Renormalisation group methods in 
ontrast 
onstitute a reli-able approa
h to des
ribe these strong 
orrelation e�e
ts. The obje
tive of this thesis isto 
ontribute to (a) the development of renormalisation group methods for states withbroken symmetry and (b) the des
ription of the low energy properties for 
ertain spe
i�
symmetry breakings.The 
al
ulations presented are based on the Anderson impurity model (AIM) andthe Hubbard model. We develop and apply the numeri
al renormalisation group (NRG)and the renormalised perturbation theory (RPT). The extension of these methods fromthe lo
al model to the latti
e model is within the dynami
al mean �eld theory (DMFT)framework. First we fo
us on the appli
ation of NRG and RPT to lo
al models. We studymagneti
 symmetry breaking in the AIM in equilibrium and non-equilibrium. This in
ludes
al
ulating dynami
 response fun
tions and all relevant quasiparti
le parameters. We alsoinvestigate the AIM with super
ondu
ting symmetry breaking in the medium. The analysisis then extended to in�nite dimensional latti
e models by using the DMFT approa
h. Thus,results are presented for �eld indu
ed magneti
 ordering and antiferromagneti
 symmetrybreaking in the Hubbard model. We also give a preliminary study of the 
rossover fromweak to strong 
oupling in the attra
tive Hubbard model with super
ondu
ting symmetrybreaking.
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Introdu
tion
There is a theory whi
h states that if everanyone dis
overs exa
tly what the Universeis for and why it is here, it will instantlydisappear and be repla
ed by somethingeven more bizarre and inexpli
able.There is another theory whi
h states thatthis has already happened. Douglas Adams

In many �elds of resear
h, ranging from so
iology over �nan
e to biology and physi
s,a fundamental 
on
ept is that of 
orrelations between 
ertain entities. When analysing
ertain events, or the behaviour of a system in terms of its 
onstituents, one often asksto what degree the subunits of the system are 
orrelated and what the impli
ation of the
orrelations are. In many 
ases in nature, the fundamental behaviour of an isolated 
on-stituent is rather unspe
ta
ular, whereas the 
olle
tive behaviour of the whole system 
anshow remarkable features. For illustration 
onsider a living organism based on individual
ells or a magneti
ally ordered state formed from itinerant ele
trons. That su
h an organ-ised state persists in spite of omnipresent natural �u
tuations 
an often be understood interms of 
orrelated behaviour.This thesis deals with many-body systems in the �eld of 
ondensed matter physi
s.There, models of strongly 
orrelated ele
trons have attra
ted an enormous amount ofattention in the last four de
ades. A number of materials, su
h as heavy fermions, hightemperature super
ondu
tors and mesos
opi
 systems like quantum dots, show behaviourwhi
h 
an only be explained when strong lo
al intera
tions are taken into a

ount. Thesestrong ele
troni
 intera
tions 
an be of various kinds, su
h as dire
t Coulomb intera
tionsor mediated by ex
hange bosons, for instan
e latti
e phonons. At low temperature, whenthere are few thermal �u
tuations, the quantum me
hani
al behaviour of these many-bodysystems is most visible. Then they 
an assume a large variety of di�erent states, su
h asa normally 
ondu
ting or insulating state, they 
an spontaneously order magneti
ally andalso be
ome super
ondu
ting. It is this variety of phases with broken symmetry, whi
hmakes these systems so interesting to study. The appearan
es of these di�erent phases
an often be understood in terms of the high degree of 
orrelation of the parti
les. Asmall 
hange in a parameter 
an alter the state of the system 
ompletely. Along 
ertainaxes in the relevant parameter spa
e, zero temperature quantum phase transitions 
an beobserved. The ri
h phase diagram of many of these systems is due to the deli
ate interplayof kineti
 and potential energy as well as that of 
harge and spin �u
tuations. Often it is a
hallenge to identify the dominant me
hanism that drives the system into a 
ertain state.Before introdu
ing the spe
i�
 models to des
ribe these systems of strongly 
orrelatedele
trons, we outline a few general 
onsiderations. It is remarkable that - as realisedin the 1920s and 1930s - in spite of the generally large Coulomb repulsion between two



2 Introdu
tionele
trons in a solid state system at short distan
es, many metals are ex
eptionally welldes
ribed by a gas of non-intera
ting fermions. Experimental studies showed that theele
tri
 and magneti
 response of these materials is essentially that of a Fermi gas, however,with e�e
tive parameters, slightly renormalised from their bare value. This phenomenon
ould be understood through ideas dating ba
k to Landau (1957), who saw that a naturalextension of the Fermi gas is a Fermi liquid, whi
h at low temperature shows ex
itationsof similar nature to the Fermi gas, albeit with renormalised parameters. The Fermi liquidthus is an e�e
tive des
ription of an intera
ting system. One of the main ideas is thatthe low energy ex
itations are in a one to one 
orresponden
e with the original ele
troni
ex
itations. This des
ription applies well for itinerant, metalli
 systems, su
h as 
opper,but is even valid for insulators, where the band stru
ture is su
h that the Fermi energy fallsinto the gap. One reason that this works so well is not that the Coulomb energy for twoele
trons is a small as 
ompared to the kineti
 energy, but that the positive ba
kground
harge leads to a s
reening of the intera
tion. Su
h a pi
ture emerges most naturally forlargely overlapping atomi
 orbitals, whi
h lead to wide 
ondu
tion bands. The situation
hanges, however, if the itinerant ele
trons belong rather to more lo
alised orbitals, su
h asin transition metals. Here the intera
tion plays a signi�
ant role if two or more ele
tronso

upy the same orbital. This leads to strong 
orrelation e�e
ts, and as a result it 
anhappen that a material with a half �lled band is a
tually an insulator be
ause of theintera
tion - this possibility was �rst pointed out by Mott (1949, 1968). It is remarkablethat the quasiparti
le ex
itations of many of these strongly 
orrelated systems are still well
hara
terised by Landau's Fermi liquid theory.In the 1960s various simple models for su
h situations were introdu
ed. One model,whi
h is of paramount importan
e for 
ondensed matter studies, is the Anderson impuritymodel (Anderson 1961). It des
ribes an atomi
 orbital (impurity) in whi
h lo
al Coulombintera
tions play an important role. It is surrounded by a non-intera
ting band of ele
trons,whi
h hybridises with this impurity. In the simplest 
ase the impurity does not havedegenerate states (s-orbital) and 
an therefore maximally be o

upied by two ele
trons withopposite spin. The Anderson impurity model has served as a sensible model for physi
sof dilute impurities in metals and forms the basis for understanding the 
elebrated Kondoe�e
t. It has been the subje
t of many theoreti
al studies and is a

epted as the standardmodel of lo
ally strongly 
orrelated ele
tron systems. It has attra
ted renewed attentionin re
ent years, sin
e it 
an be 
onsidered as an appropriate model for the des
ription ofnanos
ale quantum dot systems in 
ertain instan
es.A model whi
h takes into a

ount lo
al Coulomb intera
tions on every site of a latti
eis the Hubbard model. This model was motivated by des
ribing the basi
 magneti
 andele
tri
 properties of 
ondensed matter materials in the 1960s. For real materials it ismaybe too simpli�ed, but up to the present date it is one of the most important models forstudying strong 
orrelation e�e
ts in matter. Revived interest in the model was generatedby the dis
overy of high temperature super
ondu
tors in the 1980s and more re
ently by



3
old atomi
 gas systems in opti
al latti
e, whi
h apart from an additional 
on�nementpotential have all the 
hara
teristi
s of the Hubbard model. For this thesis the Hubbardmodel is 
onsidered as the standard latti
e model of strong ele
tron 
orrelations, whi
h dueto its ri
h phase diagram is worthwhile to study in detail. Moreover, it is, as the Andersonimpurity model, a good testing ground for methods of di�erent kinds.The simpli
ity of these models is both an advantage and a drawba
k. The �rst sin
eit allows for a fairly simple analysis in terms of few parameters, and yet a ri
h behaviourin terms of broken symmetry phases 
an be explored. The obvious drawba
k is that inorder to model �real systems� and 
ompare to experimental measurements other e�e
tssu
h as orbital degenera
ies, disorder, nearest neighbour intera
tion, latti
e phonons, et
.have to be taken into a

ount. Some of these extensions 
an be in
orporated withoutmajor di�
ulties, whereas for others the methods we des
ribe here be
ome inappli
able inpra
ti
e. We want to stress that the purpose of this work is not to explain the propertiesof a parti
ular material. It is rather to dis
uss generi
 strong 
orrelation e�e
ts and thedevelopment of reliable methods. The emphasis for this is to in
lude symmetry breakinge�e
ts, sin
e they lead to very interesting behaviour 
hara
teristi
 for these materials withstrongly 
orrelated ele
trons.In physi
s, a 
on
ept of paramount importan
e to understand the state of matter is thatof symmetry breaking. The 
on
ept is ubiquitous from 
osmology and the generation ofmatter over high energy physi
s and the fundamental intera
tions to the well known 
asesin 
ondensed matter physi
s su
h as magneti
 ordering, super
ondu
tivity or simply thea
tual 
ondensation from gas to �uid and solid state ordered form. Generally, most systemsare invariant under a larger group of symmetry transformations at high temperature. Thisis quite intuitive as strong thermal �u
tuations tend to wash out any symmetry breakingstru
ture. At low temperature, however, it is possible to stabilise a 
ertain state, su
h asa ferromagneti
 ordering whi
h in turn breaks the rotational invarian
e. It is important tonote that the intera
tions of the parti
les are very important for an ordering transition. Inother words a non-intera
ting system of fermions does not order even at zero temperatureand simply remains a Fermi gas with the 
orresponding o

upation rules. This is di�erentfor bosons, whi
h undergo Bose-Einstein 
ondensation at low temperature. For a non-intera
ting system of bosons, however, no truly super�uid state is adopted. In this thesiswe deal with systems of strongly intera
ting fermions mostly at low temperature. It istherefore to be expe
ted that a number of symmetry breakings 
an o

ur. Symmetrybreaking does not ne
essarily o

ur spontaneously for a 
ertain temperature. We 
analso bring a system into an ordered state by applying an external �eld whi
h breaks thesymmetry. The simplest 
ase in the 
ontext of strongly 
orrelated ele
trons systems is tosubje
t the system to a magneti
 �eld and study its paramagneti
 response.The strongly intera
ting nature of the ele
trons in these models poses severe di�
ultiesfor an a

urate analysis of their behaviour. Sin
e the potential energy is by no means small
ompared to the kineti
 energy, it is more than questionable to analyse these models in
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tionterms of standard, weak 
oupling, perturbative methods. Therefore, theoreti
al resear
hhas fo
used on the development of non-perturbative methods su
h as numeri
al te
hniqueslike exa
t diagonalisation or Quantum Monte Carlo. Due to the exponential in
rease ofthe underlying Hilbert spa
e the appli
ation of these is, however, often limited to fairlysmall system sizes. Another 
lass of non-perturbative methods are renormalisation group(RG) approa
hes, whi
h were �rst developed in the 1960s and 70s, and have 
ontributedto the understanding of many strong 
oupling problems. Essentially one generates a trans-formation by whi
h the system is 
onsidered on di�erent energy s
ales, and studies thebehaviour for su

essive appli
ations of the transformation. This transformation is usu-ally invoked by integrating out high energy degrees of freedom. One major aim is theidenti�
ation and 
hara
terisation of di�erent low energy �xed points. This thesis fo
useson the appli
ation and development of the RG methods numeri
al renormalisation group(NRG) and renormalised perturbation theory (RPT). Both are dire
tly appli
able to theAnderson impurity model (AIM). In the beginning of the 1990s it was shown that in thelimit of large dimensions the Hubbard model 
an be des
ribed by an e�e
tive AIM, whi
hhas to be determined self-
onsistently within the dynami
al mean �eld theory (DMFT)framework. With the help of the DMFT we 
an therefore use RPT and NRG to study theHubbard model and 
ertain symmetry breakings.Having introdu
ed the relevant topi
s we 
an formulate the main goal of this thesis.The obje
tive of the work is twofold:1. Advan
ement of Methods, i.e. to 
ontribute to the development of the RG meth-ods NRG and RPT and their extension to 
ases with symmetry breaking.2. Physi
al insight, i.e. we want to understand the low energy behaviour of thesesystems of strongly 
orrelated ele
trons in states with broken symmetry.The main unifying question of this thesis 
an then be stated:
• What are the properties of the quasiparti
le ex
itations of strongly 
orrelated fermionsin lo
al and latti
e models subje
t to 
ertain symmetry breakings and how 
an weanalyse them?Figure 1 gives an overview of the stru
ture and 
ontents of the thesis in terms of models,methods and appli
ations. The thesis is divided into three parts. The �rst introdu
es themodels and methods, the se
ond dis
usses results for the lo
al models, and in the thirdpart results for the latti
e models are presented. On the top of �gure 1 we 
an see the twotypes of models under 
onsideration. In pra
ti
e, we will study the AIM as an impuritymodel and the Hubbard model as a latti
e model. We will give a brief introdu
tion to themin 
hapter 1, establishing the ne
essary notation. The analysis is in terms of a 
ombinationof the RPT and NRG methods whi
h are linked to the 
orresponding appli
ation (box in�gure 1) by a line. These methods as well as the DMFT are brie�y introdu
ed in 
hapter
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PSfrag repla
ements

Impuritymodels Latti
e modelsDMFT
NRGKeldysh

Spin 
hannelSpin 
hannel Charge 
hannelQuantum dotQuantum dot Quantum dotSC bath(Equilibrium) (Nonequilibrium) Corr. ferm.Corr. ferm.Corr. ferm. Magneti
 �eldMagneti
 �eld Magneti
 �eld AFM orderingSC orderingBCS-BEC-
rossover (Chapter 3) (Chapter 4) (Chapter 5) (Chapter 6) (Chapter 7)(Chapter 8)NRGRPTFigure 1: S
heme of relevant models, methods and their range of appli
ation.2. Chapter 1 and 2 form the �rst part of the thesis. In the se
ond part we study two typesof symmetry breaking in the AIM, in the spin and in the 
harge 
hannel. The AIM doesnot possess a spontaneously ordered state so the ordering is an indu
ed one. In the spin
hannel we study the in�uen
e of a magneti
 �eld, whi
h is the subje
t of 
hapter 3. Itwill turn out that in order to des
ribe measurements of the 
urrent in quantum dot systemin a magneti
 �eld, the theory has to be extended to non-equilibrium and a two 
hannelmodel, whi
h is the fo
us of 
hapter 4. The following 
hapter 5 
onsiders a symmetrybreaking in the 
harge 
hannel. The bath of the model is given by a BCS super
ondu
torthere, and we study the e�e
t of this on the impurity. The third part of the thesis dealswith 
orrelated fermions in the latti
e model. First we study symmetry breaking in thespin 
hannel. Chapter 6 deals with �eld indu
ed magneti
 ordering in the Hubbard model.Spontaneous antiferromagneti
 ordering in the doped latti
e system is analysed in 
hapter7. In 
hapter 8 we 
onsider symmetry breaking in the 
harge 
hannel and fo
us spe
i�
allyon spontaneous super
ondu
ting order in the attra
tive model.Let us anti
ipate some of the main results of this work. For the lo
ally 
orrelatedsystems with magneti
 symmetry breaking we will see that a des
ription in terms of �elddependent renormalised parameters allows one to 
hara
terise the free quasiparti
les andmany stati
 response quantities, the low temperature response, the low energy dynami
sand the behaviour in small but �nite voltage. With the renormalised perturbation expan-sions we 
an extend the analysis to higher energies and voltages, and it proves very usefulto base the 
onsiderations on the �eld dependent renormalised parameters. We also dis
uss
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tionNRG results for stati
 and dynami
 quantities in the equilibrium 
ase, and the 
omparisonwith 
orresponding results from RPT 
al
ulations gives good agreement. We show thatthe situation for an impurity in a BCS super
ondu
tor 
an be des
ribed a

urately withthe NRG method. In the lo
ally repulsive 
ase the lowest ex
itations 
orrespond to boundstates in the super
ondu
ting gap and we give an a

urate des
ription of their positionand weight. We also analyse the ground state transition whi
h o

urs with 
hanging thesystem parameters, and present results for spe
tral fun
tions.In the third part of the thesis we fo
us on the symmetry breaking in latti
e modelswithin the DMFT des
ription. When studying the paramagneti
 response of the Hubbardmodel to a homogeneous magneti
 �eld in terms of stati
 and dynami
 response fun
tions,we �nd regimes with qualitatively di�erent behaviour. At half �lling we observe metam-agneti
 behaviour a

ompanied by a �eld indu
ed metal insulator transition. In the doped
ase no metamagneti
 behaviour o

urs, but the spin dependent e�e
tive masses of thequasiparti
les di�er markedly. As for the lo
al models the des
ription in terms of quasi-parti
les with �eld dependent renormalised parameters proves to be useful here. We alsogive a detailed analysis of the nature of the renormalised quasiparti
le in a metalli
 anti-ferromagnet and develop an a

urate des
ription of the renormalised quasiparti
le bands.Renormalised parameters 
an be dedu
ed as before, but the symmetry breaking natureleads to expressions for the spe
tral quasiparti
le weight and the e�e
tive mass enhan
e-ment di�erent from the ones in the normal state. For the attra
tive system we study thebroken symmetry state with super
ondu
ting order. We show that the 
rossover of stati
quantities and spe
tral fun
tions from the BCS super
ondu
ting regime at weak 
ouplingto the BEC regime of tightly bound fermions at strong 
oupling o

urs smoothly.The author is aware that the thesis is of 
onsiderable length. As a variety of di�erentissues are addressed, it seemed di�
ult in the preparation to restrain the length of thedo
ument without loosing 
larity in the exposition. However, as mu
h of the dis
ussionof the results in ea
h 
hapter is self-
ontained, apart from linking remarks and 
ommonmethods, the reader is en
ouraged to fo
us sele
tively on topi
s of personal preferen
e.
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Chapter 1Models of strongly 
orrelatedele
trons

The art of the model-building is the ex-
lusion of real but irrelevant parts ofthe problem, and entails hazards for thebuilder and the reader.Philip W. Anderson

In this 
hapter we introdu
e the details of the models relevant for this thesis. First wedis
uss the Anderson impurity model, its basi
 behaviour and parameter ranges. The sym-metries of the model are identi�ed and it is shown how the attra
tive and repulsive modelare related by a mapping. Similarly, the Hubbard model, its parameters and behaviour inlimiting 
ases are introdu
ed. We dis
uss symmetries, symmetry breaking terms and themapping from the attra
tive to the repulsive model.1.1 The Anderson Impurity Model (AIM)1.1.1 General features and model parametersHistori
ally the Anderson impurity model (AIM) was proposed in order to des
ribe metalswith magneti
 impurities in a simpli�ed mi
ros
opi
 model. The Hamiltonian of the AIMis given by (Anderson 1961)
HAnd =

∑

k,σ

εkc
†
k,σck,σ +

∑

σ

εdc
†
d,σcd,σ +

∑

k,σ

Vk(c†
k,σcd,σ + h.c.) + Uc†d,↑cd,↑c

†
d,↓cd,↓. (1.1)The model des
ribes an impurity (d-site) with energy εd in a metalli
 bath with dispersion

εk. There is a hopping term from the bath to the impurity site whose amplitude is 
har-a
terised by the parameter Vk. This term leads to a hybridisation between the bath andthe impurity level. The last term is the on-site intera
tion with strength U . The spin label
σ here and in the rest of this thesis assumes values σ = ±1 and therefore the impurity
orresponds to an s-orbital. In many situations where an impurity in metal is modelled ahigher orbital degenera
y (d- or f-orbital) would be more realisti
. In this work we will,however, fo
us on the singly degenerate 
ase. In the following we brie�y establish somesimple features and terminology 
ommonly used. Unless otherwise stated we will assume



10 Models of strongly 
orrelated ele
tronsthroughout the 
ourse of this work that the Fermi energy εF is at zero energy, εF = 0. For
εd = −U/2 and for a half �lled 
ondu
tion band the Hamiltonian (1.1) is invariant underthe parti
le hole transformation

cd,σ ↔ −c†d,σ ck,σ ↔ c†−k,σ. (1.2)Hen
e, this 
ase is termed parti
le hole symmetri
 
ase or simply symmetri
 AIM. We willalso refer to it as half �lled 
ase in analogy to the 
orresponding latti
e situation. Withouthybridisation, Vk → 0, the model 
an be trivially solved (atomi
 limit) and the ground-state energy E0 only depends on the impurity ele
troni
 o

upation nd. For nd = 0 wehave E0 = 0, for single o

upation, nd = 1, E0 = εd, and the doubly o

upied impurity hasenergy E0 = 2εd +U . We 
an see that for the symmetri
 AIM zero and double o

upationare degenerate and if εd < 0 the lowest energy is given by the singly o

upied state. For
U > 0 therefore the ground state is singly o

upied. This argument 
an be extended in asimpli�ed pi
ture to the 
ase with �nite hybridisation, Vk 6= 0. The delta-fun
tion atomi
limit peak is then broadened by the hybridisation with the 
ondu
tion band.In the non-intera
ting 
ase, U = 0, the model 
an be solved with the Green's fun
tionste
hnique as already done in the original work by Anderson (1961). From the equations ofmotion we �nd the Fourier transform of the retarded impurity Green's fun
tion at T = 0,

Gd(ω) = 〈〈cd,σ ; c†d,σ〉〉ω = −i
∞
∫

−∞

dt e−iωtθ(t)〈{cd,σ(t), c†d,σ(0)}〉. (1.3)The expli
it expression for U = 0 is
G0

d(ω) =
1

ω+ − εd −K(ω)
, (1.4)where ω+ = ω + iη, η → 0. K(ω) is generally referred to as the hybridisation fun
tion.With the Dira
 identity

1

x± iη
= P 1

x
∓ iπδ(x) (1.5)the hybridisation term in the denominator be
omes

K(ω) =
∑

k

|Vk|2
ω + iη − εk

= P
∑

k

|Vk|2
ω − εk

− iπ
∑

k

|Vk|2δ(ω − εk) ≡ Λ(ω) − i∆(ω). (1.6)In the AIM it is 
ommon to assume a �at 
ondu
tion band density of states (ρc ≡ 1/2D)and a broad band (εk ∈ (−D,D), where D is the largest parameter in the problem). Thenfor the usual range of ω the real part of the expression Λ(ω) ≃ ∆(0) ln(ω−D
ω+D ) is smalland 
an be negle
ted or absorbed in a renormalisation of εd [for a dis
ussion see (Hewson1993a, 
hapter 1)℄. Approximating the hybridisation by the value at the Fermi level,

Vk ≃ VkF
≡ V , ∆(ω) = πρc(0)V

2 = πV 2/2D ≡ ∆ independent of ω, whi
h will be usedthroughout this thesis, when the lo
al model is 
onsidered. In the DMFT framework we



1.1 The Anderson Impurity Model (AIM) 11have to 
onsider an e�e
tive impurity model and the hybridisation fun
tion K(ω) retainsits frequen
y dependen
e. Here for the impurity model, however, we �nd the simpli�edexpression for (1.4)
G0

d(ω) =
1

ω+ − εd + i∆
, (1.7)whi
h is what is 
ommonly used as the free retarded Green's fun
tion for the AIM. The
orresponding spe
tral fun
tion ρ0

d(ω) = −ImG0
d(ω)/π is a Lorentz 
urve 
entred at εdwith half width at half maximum (HWHM) ∆,

ρ0
d(ω) =

∆/π

(ω − εd)2 + ∆2
. (1.8)It is therefore 
lear to see that the hybridisation broadens the lo
al level εd in the spe
traldensity. From the atomi
 limit analysis we have another level at energy εd + U , whi
h isalso found to be broadened by the hybridisation. Based on these 
onsiderations we 
andistinguish the followingParameter regimes:1. The lo
al moment regime, where εd ≪ εF and |εF − (εd + U)| ≫ ∆, 
onstitutes asingly o

upied impurity with a spin (lo
al moment) 
oupling to the 
ondu
tion bath.In this regime 
harge �u
tuations on the impurity site are largely suppressed, anda transformation by S
hrie�er and Wol� (1966) to the Kondo model is appli
able.The intera
tion term then has the form

Hint =
∑

k,k′

Jk,k′[S+c†k,↑ck′,↓ + S−c†k,↓ck′,↑ + Sz(c†k,↑ck′,↑ − c†k,↓ck′,↓)]. (1.9)
S is the impurity spin, Sα = c†d,σσ

(α)
σσ′cd,σ′ (α: Cartesian 
omponent), S± = S1± iS2.This is the regime, where Kondo physi
s is dominant at low temperature and thespe
tral density shows a narrow peak at the Fermi level.2. The intermediate valen
e regime where, |εd − εF| ≃ ∆ ≃ |εF − (εd + U)| and thus thetwo levels lie within the width of ∆. Real 
harge �u
tuations of ele
trons hoppingon and o� the impurity are important in this regime.3. The non-magneti
 regime, εd−εF ≫ ∆, where it 
osts energy to o

upy the impurity.This is the 
ase, for instan
e, in the symmetri
 model with attra
tive intera
tion,

U < 0. The system is in this regime also for |εd − εF| ≫ ∆, |εF − (εd + U)| ≫ ∆,su
h that the impurity is either always doubly o

upied or empty.If we restri
t ourselves to the symmetri
 model, εd = −U/2, a mean �eld analysis showsthat only the ratio U/π∆ is relevant for the 
hara
terisation of the behaviour (Anderson1961). One �nds an instability towards a magneti
 solution for U/π∆ > 1. Although this



12 Models of strongly 
orrelated ele
tronsis an artefa
t and restored by �u
tuations it is 
ommon to distinguish the regimes by thisratio, i.e. a weak 
oupling regime for U/π∆ < 1, an intermediate 
oupling regime, U/π∆ ≃
1, and strong 
oupling regime, U/π∆ > 1. For large enough U , in pra
ti
e U/π∆ > 2,the last 
ase 
orresponds to the �rst regime mentioned above. An important quantity forthis regime is the Kondo temperature TK, whi
h 
an be de�ned for the symmetri
 modelas (Horvati
 and Zlati
 1985)

TK =
√

(U∆/2)e−πU/8∆+π∆/2U . (1.10)It is the energy s
ale where the perturbation theory of Kondo (1964) diverges, and it isthe only relevant low energy s
ale. The ratio of the spin sus
eptibility of the impurity χsand the linear T 
oe�
ient of the spe
i�
 heat γd, whi
h is referred to as Sommerfeld orWilson ratio,
R = 4πχs/3(gµB)2γd, (1.11)des
ribes the transition from weak 
oupling to Kondo behaviour; µB = e~

2me
is the Bohrmagneton. One has R = 1 for nonintera
ting ele
trons (weak 
oupling limit) and R = 2in the strong 
oupling 
ase.The low energy behaviour of the AIM 
an be expressed in terms of the renormalisedquasiparti
les of a lo
al Fermi liquid, whi
h is des
ribed by a renormalised version of thesame model (Hewson 1993a,b),

H̃And =
∑

k,σ

εkc
†
k,σck,σ +

∑

σ

ε̃dc
†
d,σcd,σ +

∑

k,σ

Ṽk(c†
k,σcd,σ + h.c.)

+Ũ : c†d,↑cd,↑c
†
d,↓cd,↓ :, (1.12)where the 
olon bra
kets indi
ate that the expression within them must be normal-ordered.This Hamiltonian 
orresponds to the low energy �xed point of the Wilson numeri
al renor-malisation group transformation of the dis
retised Anderson and Kondo models, with theleading irrelevant terms (Wilson 1975, Krishna-murthy et al. 1980a, Hewson 1993a). Theadvantage of des
ribing the �xed point in this way, as a renormalised Anderson modelrather than as a strong 
oupling �xed point of the Kondo model, even in the strong 
orre-lation or Kondo limit, is that it 
learly brings out the 1-1 
orresponden
e of the low-lyingsingle parti
le ex
itations with those of the non-intera
ting model (Hewson et al. 2004,Hewson 1993a, 2005). Furthermore, it is appli
able in all parameter regimes, from weakto strong 
oupling and for all o

upation values for the lo
al site. The e�e
tive level, ε̃d,the e�e
tive resonan
e width ∆̃ = πṼ 2/2D, and e�e
tive lo
al intera
tion, Ũ , de�ne thequasiparti
les of this renormalised model. A more rigorous de�nition of these renormalisedparameters in terms of the self-energy and vertex fun
tion is given in 
hapter 2. The freequasiparti
le density of states is given by repla
ing the bare parameters in (1.8) by therenormalised parameters ,

ρ̃0
d(ω) =

∆̃/π

(ω − ε̃d)2 + ∆̃2
. (1.13)



1.1 The Anderson Impurity Model (AIM) 13For parti
le hole symmetry ε̃d = 0, and the 
orresponding Lorentz peak ρ̃0
d(ω) des
ribesthe Kondo quasiparti
le resonan
e at the Fermi level.The spin sus
eptibility χs = χimp/(gµB)2 
an be related to the renormalised parameters(Hewson 1993a)

χs =
ρ̃0

d(0)

2
[1 + Ũ ρ̃0

d(0)], (1.14)and sin
e the spe
i�
 heat 
oe�
ient in Fermi liquid theory is given by
γd =

2π2

3
ρ̃0

d(0), (1.15)we 
an express the Wilson ratio (1.11) as
R = 1 + Ũ ρ̃0

d(0). (1.16)Sin
e the only one energy s
ale in the Kondo regime is TK, it possible to relate the renor-malised parameters to the Kondo temperature, and one �nds π∆̃ = Ũ = 4TK.Symmetries and symmetry breakingThe total spin operator of the system S =
∑

k Sk + Sd 
ommutes with the Hamiltonian(1.1) and due to this SU(2) symmetry the total spin is a 
onserved quantum number ofthe AIM. This is not the 
ase anymore if we 
ouple the ele
trons to a magneti
 �eld Hextat the d-site. Conveniently, we 
hoose the �eld along the z-axis, Hext = Hzez su
h thatthe 
oupling term is of the form H ′
mag = −µdHz = h(nd,↑ − nd,↓), where h := gµBHz

2 withthe ele
troni
 g-fa
tor. Su
h a term implies that a positive magneti
 �eld de
reases theenergy of a down spin ele
tron and thus favours an antiparallel alignment of the ele
tronsalong the �eld axis, as it is usually the 
ase in nature. Theoreti
ally, it is, however slightlymore 
onvenient to have a magnetisation and �eld with the same sign and therefore it is
ommon to 
hoose
Hmag = −h(nd,↑ − nd,↓) = −h

∑

σ

σnd,σ, (1.17)a 
onvention we will 
omply with throughout this thesis. In the wide band 
ondu
tionlimit we 
an negle
t any magneti
 �eld a
ting on the band ele
trons. Any polarisationonly a�e
ts the impurity via the hybridisation ∆ and any 
hange to the 
ondu
tion banddensity due to an applied �eld is only at the band edges (±D) and therefore negligible inthe wide band limit (Hewson et al. 2005). The AIM in magneti
 �eld is subje
t of 
hapter3 and 4.The Hamiltonian of the AIM (1.1) is also invariant under a U(1) gauge transformationand therefore 
onserves the total parti
le number N =
∑

k,σ nk,σ + nd or 
harge. Thissymmetry is broken if the ele
tron bath is in a super
ondu
ting state rather than a metalli
state. This situation will be subje
t of the study in 
hapter 5.



14 Models of strongly 
orrelated ele
trons1.1.2 The Spin-Isospin TransformationWe 
an map the symmetri
 AIM (U > 0) with magneti
 �eld to an attra
tive AIM withoutmagneti
 �eld by employing a �spin-
harge�-transformation, or spin-isospin transformation
T.1 Denote the uno

upied impurity site |⊔〉 ≡ | ⇓〉 by isospin Td,z = −1

2 , and in analogythe doubly o

upied site (Td,z = 1
2 ) by | ↑↓〉 ≡| ⇑〉. T maps a spin state to an isospin state,i.e.
| ↑〉 T→| ⇑〉 and | ↓〉 T→| ⇓〉. (1.18)In order to write this formally for the Anderson model it is 
onvenient to use Hubbardoperators, Xab := |a〉〈b |. The impurity site operator thus 
an be written as

c†d,↑ = X↑,⇓ +X⇑,↓ and c†d,↓ = X↓,⇓ −X⇑,↑. (1.19)The spin-
harge transformation has the e�e
t
Tc†d,↑T

−1 = X⇑,↓ +X↑,⇓ = c†d,↑, but Tc†d,↓T
−1 = X⇓,↓ −X↑,⇑ = cd,↓and vi
e versa.The symmetri
 AIM lo
al magneti
 �eld H in positive z-dire
tion is given by (1.1) with

εd = −U/2 plus (1.17). We �nd that nd,↑ = X↑,↑ +X⇑,⇑ is invariant under T , Tnd,↑T
−1 =

nd,↑. However, nd,↓ = X↓,↓+X⇑,⇑ transforms to 1−nd,↓, where 1 = X↑,↑+X↓,↓+X⇑,⇑+X⇓,⇓was used. Thus, we see that the spin operator Sd,z,
Sd,z =

1

2
(nd,↑ − nd,↓)

T→ 1

2
(nd,↑ + nd,↓ − 1) =: T̂d,z, (1.20)transforms to the isospin operator T̂d,z with the property T̂d,z| ⇑〉 = 1

2| ⇑〉, T̂d,z| ⇓〉 = −1
2| ⇓〉.The intera
tion term transforms as nd,↑nd,↓ = X⇑,⇑

T→ X↑,↑. Omitting the 
ondu
tionband and the hybridisation term one �nds
T (HAnd +Hmag)T

−1 = −2hX⇑,⇑ − (εd + h)(X↑,↑ +X↓,↓) + εd + h (1.21)by parti
le-hole symmetry and using the expression for the unit operator 1. This 
an be
ompared with parameters ε′d, U ′ for an Anderson model without magneti
 �eld , negle
tingan additional 
onstant,
H ′

And = (2ε′d + U ′)X⇑,⇑ + ε′d(X↑,↑ +X↓,↓). (1.22)The 
omparison of (1.21) with (1.22) shows that it is possible to transform the symmetri
Anderson model with lo
al repulsion (U > 0) and with a lo
al magneti
 �eld to an asym-metri
 Anderson model with negative U ′ = −U and the identi�
ation for the asymmetri
parameters with the magneti
 �eld is
h = −

(

ε′d +
U ′

2

)

. (1.23)1This is equivalent to a parti
le hole transformation for the down spin parti
les.



1.2 The Hubbard Model 15Clearly, the symmetri
 
ase (ε′d = −U ′

2 ) 
orresponds to zero magneti
 �eld. For ε′d < ∣∣U2 ∣∣
h is negative. The appropriate transformation for the band ele
trons is

Tc†k,↑T
−1 = c†k,↑, and Tc†k,↓T

−1 = c−k,↓,if ε−k = −εk and V−k = V ∗
k .The dynami
 response fun
tions in the 
harge and spin 
hannel map onto ea
h otherunder the spin-isospin transformation T . The diagonal and transverse spin (χs and χt)and 
harge sus
eptibilities (χc and χt

c) are given by the following equations
χs(ω) = 〈〈nd,↑ − nd,↓;nd,↑ − nd,↓〉〉ω , (1.24)
χc(ω) = 〈〈nd,↑ + nd,↓ − 1;nd,↑ + nd,↓ − 1〉〉ω , (1.25)
χt(ω) = 〈〈c†d,↑cd,↓; c

†
d,↓cd,↑〉〉ω, (1.26)

χt
c(ω) = 〈〈c†d,↑c

†
d,↓; cd,↓cd,↑〉〉ω. (1.27)One �nds easily that

χs(ω)
T↔ χc(ω) and χt(ω)

T↔ χt
c(ω). (1.28)1.2 The Hubbard Model1.2.1 General features and model parametersProbably the simplest latti
e model to study strong 
orrelation physi
s in
luding mi
ro-s
opi
 
harge and spin degrees of freedom, is the model suggested and dis
ussed by Hubbard(1963, 1964a,b), Kanamori (1963), and Gutzwiller (1963). The Hamiltonian - referred toas the Hubbard model - in the grand-
anoni
al formalism reads

H = −
∑

i,j,σ

(tijc
†
i,σcj,σ + h.c.) − µ

∑

iσ

niσ + U
∑

i

ni,↑ni,↓, (1.29)where the �rst term des
ribes hopping of ele
trons from a latti
e site i to j with amplitude
tij = 1/Ns

∑

k eik(Ri−Rj)εk; Ns is the number of latti
e sites. Hopping is often restri
tedto neighbouring sites and the amplitude is taken to be the same for all sites t. µ is the
hemi
al potential, whose value is determined by the �lling fa
tor x. The third term in H
onstitutes the on-site ele
tron-ele
tron intera
tion of strength U . The model we 
onsiderhere is for a band of s-orbitals su
h that ea
h site is maximally o

upied by two ele
trons.Extension to higher degenera
ies are not 
onsidered in this thesis, but are 
ertainly ofinterest for the des
ription of real materials. If a 
ertain hopping amplitude t is given theband dispersion energy 
an be 
al
ulated, and for instan
e, for nearest neighbour hoppingon a 
ubi
 latti
e with latti
e 
onstant a we have in d dimensions
εk = −t

∑

〈i,j〉

e−ik(Ri−Rj) = −2t

d
∑

α=1

cos(kαa). (1.30)



16 Models of strongly 
orrelated ele
tronsFor large U and half �lling (x = 1) every latti
e spa
e is likely to be o

upied byonly one ele
tron. Starting from su
h a 
on�guration one 
an 
al
ulate 
orre
tions in aperturbation theory in the hopping term and one obtains the so 
alled t-J-model, where aHeisenberg spin 
oupling term,
HJ =

J

2

∑

〈i,j〉

Si · Sj , (1.31)with J = 4t2/U , is generated. This is analogous to the mapping of the AIM to the Kondomodel for strong 
oupling. For the t-J-model away from half �lling the hopping termwith amplitude t [
f. eq. (1.29)℄ has to be 
onsidered, but double o

upan
y is alwaysforbidden. Sin
e J is positive an anti-ferromagneti
 ordering is expe
ted in the parameterregime where the doping is not too large.In the atomi
 limit, εk = t0 (zero bandwidth) or tij = δijt0, the equations of motionfor the retarded Green's fun
tion 
an be solved exa
tly, whi
h yields for µ = 0

Gal
ij,σ(ω) = δij

(

1 − 〈n−σ〉
ω+ − t0

+
〈n−σ〉

ω+ − (t0 + U)

)

. (1.32)This gives two delta-peaks at t0 and t0 + U similar as in the atomi
 limit for the AIM.These ex
itations are broadened for �nite band width and then are referred to as lowerand upper Hubbard peaks.The Hubbard Hamiltonian (1.29) has a number of symmetries. It is invariant under aglobal gauge transformation,
c†j,σ → eiαc†j,σ, (1.33)and 
orrespondingly the ele
tron number is 
onserved. (1.29) is also invariant under rota-tions in spin spa
e U(λ) = eiλ·S (SU(2) symmetry), where S =

∑

i Si, and therefore thetotal spin is a 
onserved quantity. Similar as the AIM the Hubbard model for half �lling,a bipartite latti
e and µ = U/2 is invariant under a parti
le-hole transformation
ci,σ ↔ −c†i,σ. (1.34)Other symmetries for spe
i�
 latti
e stru
tures exist, but we will not 
onsider any of thesein detail.1.2.2 The Spin-Isospin transformation and symmetry breakingSimilar as in the AIM des
ribed in se
tion 1.1.2 there is a 
anoni
al transformation whi
hmaps the attra
tive model with arbitrary 
hemi
al potential to a half-�lled repulsive modelwith a magneti
 �eld. The details of this transformation are given in the appendix of the re-view arti
le by Mi
nas et al. (1990). Starting point is the attra
tive Hubbard Hamiltonianin the form

H− = −
∑

i,j,σ

(tijc
†
i,σcj,σ + h.c.) − µ

∑

i,s

ni,σ − U
∑

i

ni,↑ni,↓ = H(t
(1)
ij , µ

(1), U (1)), (1.35)



1.2 The Hubbard Model 17where U (1) = −U < 0. Note that the 
hemi
al potential µ(1) = µ here 
an take arbitraryvalues, su
h that a 
ertain �lling is a
hieved. This model is not magneti
ally ordered sin
eele
trons tend to form lo
al pairs due to the attra
tion term (Lieb 1989). As a 
onsequen
eone has
∑

i

〈Sα
i 〉 = 0,

∑

i

eiq0Ri〈Sα
i 〉 = 0, (1.36)

α = +,−, z, i.e. no ferromagneti
 order and no 
ommensurate anti-ferromagneti
 order. q0su
h that eiq0Ri 
hanges sign from one sublatti
e to another. The perfe
t nesting 
ondition
εk = 1/Ns

∑

ij tije
ik(Ri−Rj) = −εk+q0 is satis�ed. The 
anoni
al transformation

c†i,↓ = eiq0Ribi,↓, c†i,↑ = b†i,↑, (1.37)
ci,↓ = e−iq0Rib†i,↓, ci,↑ = bi,↑, (1.38)su
h that ni↑ = n′i↑ but ni↓ = 1 − n′i↓, maps H(t

(1)
ij , µ

(1), U (1)) to H(t
(2)
ij , µ

(2), U (2)) +

Hmag(h) + C in terms of the b operators,
Hmag(h) = −h

∑

i

(n′i,↑ − n′i,↓). (1.39)The parameters are related by t(1)ij = t
(2)
ij = tij , U (2) = −U (1) = U > 0, µ(2) = U/2 and

h = −(U/2 + µ). C = µNs and 
an be omitted as a 
onstant. Spin quantities transforminto 
harge quantities and vi
e versa, as has been seen above in the AIM. Condition (1.36)be
omes 1/Ns
∑

i〈ni〉 = 1, whi
h 
orresponds to half �lling.We want to look at the relevant symmetry breaking terms in the 
harge and spin
hannel. The symmetry breaking of interest for the repulsive model is an external �eld
oupling to the spin degrees of freedom and we introdu
e the general term
H+

sb =
∑

i

Hi · Si =
∑

i

H1
i S

1
i +H2

i S
2
i +H3

i S
3
i . (1.40)We 
an introdu
e the two operators S+

i = c†i,↑ci,↓ and S−
i = c†i,↓ci,↑ su
h that

S1
i =

1

2
(S+

i + S−
i ), S2

i = − i

2
(S+

i − S−
i ), S3

i =
1

2
(ni,↑ − ni,↓). (1.41)A spe
ial 
ase for magneti
 symmetry breaking is homogeneous magneti
 symmetry break-ing H1

i = H2
i = 0 and H3

i = −2h, whi
h 
orresponds to 
hoosing a �eld along the z-axis.The symmetry breaking term then just has the simple form (1.39). Another symmetrybreaking is the antiferromagneti
 symmetry breaking with the z-axis as preferred orienta-tion. This requires a bipartite latti
e stru
ture with an A and B sublatti
e. The symmetrybreaking �eld has the form H1
i = H2

i = 0 and H3
i = −2h for i ∈ A and H3

i = 2h for i ∈ B.For the attra
tive Hubbard modelH− the natural symmetry breaking term is a 
ouplingto the 
harge degrees of freedom. In analogy to the spin operators we 
an introdu
e an
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orrelated ele
tronsisospin operator re�e
ting the di�erent 
harge degrees for freedom, Tα
i = 1

2C
†
i σ

(α)Ci, where
C

†
i = (c†i,↑, ci,↓). We introdu
e similar as above T+

i = c†i,↑c
†
i,↓, T−

i = ci,↓ci,↑ su
h that
T 1

i =
1

2
(T+

i + T−
i ), T 2

i = − i

2
(T+

i − T−
i ), T 3

i =
1

2
(ni,↑ + ni,↓). (1.42)The symmetry breaking term for the attra
tive model has then the standard form

H−
sb =

∑

i

Mi · Ti =
∑

i

M1
i T

1
i +M2

i T
2
i +M3

i T
3
i . (1.43)There are two types of symmetry breaking of parti
ular interest in the attra
tive Hubbardmodel. The �rst one is a 
harge density wave (CDW) state. For this we need to 
onsidera bipartite latti
e and the order parameter 
orresponds to 〈T 3

i − T 3
i+1〉 6= 0, where i ∈ Aand i + 1 ∈ B. Su
h a symmetry 
ould be invoked by a symmetry breaking �eld ofthe form M1

i = M2
i = 0 and M3

i = εd for i ∈ A and M3
i = −εd for i ∈ B. Anothersymmetry breaking of interest is super
ondu
ting order whi
h 
an be indu
ed by 
hoosing

M1
i = Re∆0

sc and M2
i = Im∆0

sc and M3
i = 0. This is an o�diagonal symmetry breakingand has the expli
it form

H−
sc =

∑

i

(Re∆0
sc − iIm∆0

sc)T
+
i + (Re∆0

sc + iIm∆0
sc)T

−
i =

∑

i

[∆0
sc]

∗c†i,↑c
†
i,↓ + ∆0

scci,↓ci,↑We saw above that the attra
tive and the repulsive model with �eld are related by a
anoni
al transformation as given in (1.38). Let us investigate how the symmetry breakingterm transforms under this transformation. We �nd T+
i → S+

i eiq0Ri and T−
i → S−

i e−iq0Riand thus apart from additional 
onstants
T 1

i → 1

2
S+

i eiq0Ri +S−
i e−iq0Ri , T 2

i → − i

2
S+

i eiq0Ri −S−
i e−iq0Ri , T 3

i → S3
i , (1.44)whi
h expli
itly shows that apart from phase fa
tors spin is transformed into isospin andvi
e versa. We 
an write

H−
sb →

∑

i

(M1
i − iM2

i )eiq0RiS+
i + (M1

i + iM2
i )e−iq0RiS−

i +Mz
i S

3
iSin
e the symmetry breaking term in the spin 
hannel (1.40) 
an be written as

H+
sb =

∑

i

H+
i S

+
i +H−

i S
−
i +Hz

i S
3
i , (1.45)where H+

i = H1
i − iH2

i and H−
i = H1

i + iH2
i , we 
an relate symmetry breaking �elds by

Mz
i = Hz

i and H+
i = (M1

i − iM2
i )eiq0Ri and H−

i = (M1
i + iM2

i )e−iq0Ri . It is therefore easyto see that the diagonal antiferromagneti
 ordering in the repulsive model 
orresponds to
harge density wave ordering in the attra
tive model, and the super
ondu
ting symmetrybreaking (o�diagonal in the 
harge 
hannel) in the attra
tive 
ase 
orresponds to transverseordering in the spin 
hannel for the repulsive 
ase. More details 
on
erning di�erent typesof ordering 
an be found in the review arti
le by Mi
nas et al. (1990).



Chapter 2Methods for strong 
orrelationphysi
s

Most of the unsolved problems ofphysi
s and theoreti
al 
hemistryare of the kind the renormalizationgroup is intended to solve (otherproblems usually do not remain un-solved for long).Kenneth G. Wilson

In this 
hapter the methods relevant for this thesis are des
ribed. First we fo
us on therenormalisation group methods dire
tly appli
able to the AIM. The most important aspe
tsof the numeri
al renormalisation group, in
luding all the re
ent extensions to 
al
ulatespe
tral fun
tions, are outlined. Then we dedi
ate a large part of the 
hapter to thedetailed des
ription of the renormalised perturbation theory approa
h and illustrate theapproa
h with a few examples of low order expansions. In the last se
tion of the 
hapterwe give the main equations for the dynami
al mean �eld theory, whi
h links the solutionof an e�e
tive impurity model to that of a latti
e model.2.1 The Numeri
al Renormalisation Group (NRG)The renormalisation group (RG) for statisti
al physi
s is an approa
h designed to under-stand the behaviour of systems with many 
oupled degrees of freedom. Let the systembe 
hara
terised by a Hamiltonian H. Mathemati
ally, the RG 
an then be de�ned asa homomorphism R on the spa
e of Hamiltonians VH , R : VH → VH . It 
an be more
onvenient to understand a Hamiltonian H ∈ VH in terms of its physi
al 
ouplings g, su
hthat H = H(g) is a family of Hamiltonians for di�erent g. Then the RG mapping a
tson the spa
e of 
ouplings Vg, r : Vg → Vg. Usually, this mapping is invoked by de
reas-ing the energy s
ale, for instan
e the high energy 
ut-o�, or 
oarse graining of spa
e. Inpra
ti
e, this 
an be done, for instan
e, by 
hanging the fundamental length s
ale of theproblem by a parameter, b say, and integrating out the degrees of freedom within the oldand new fundamental s
ale. Usually, the RG involves a res
aling step in order to makethe Hamiltonian before and after the transformation 
omparable. We 
an 
hara
terise thetransformation by the parameter b, r = rb and a mathemati
al group law is realised for su
-
essive appli
ation of the mapping via rb2(rb1(g)) = rb2+b1(g). Sin
e in general an inverse
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orrelation physi
sof the transformation does not exist (the degrees of freedom whi
h are integrated out arenot a

essible anymore), the renormalisation group is mathemati
ally a semi-group only.A �xed point for the transformation in the 
oupling spa
e g∗ is de�ned by r(g∗) = g∗, andthus implies invarian
e of the Hamiltonian under the RG transformation. Physi
ally, the�xed point Hamiltonian 
an represent the essen
e of the low energy physi
s of the problem(Coleman 2002).In many 
ases one aims to identify all the �xed points of a model, and to �nd out forwhi
h initial 
ouplings a 
ertain �xed point in the 
oupling spa
e is favoured and whether itis stable. An interpretation of the RG is to see it as a s
aling approa
h, where a �xed pointis rea
hed, when the 
ut-o� energy drops below the lowest energy s
ale in the problem, su
hthat no further 
hanges o

ur and the Hamiltonian remains invariant. Before a �xed pointis rea
hed a 
rossover from one e�e
tive model des
ription to a di�erent one 
an o

ur.This happens, when the energy 
ut-o� be
omes smaller than a 
hara
teristi
 energy s
alefor the model. Therefore, a parti
ular 
lass of high energy ex
itations 
an only o

urthrough virtual pro
esses and therefore the Hamiltonian des
ription alters. An exampleis the passage from the AIM to the Kondo model, where in the latter 
ase real 
harge�u
tuations are eliminated.In this thesis we deal with a renormalisation group approa
h in the numeri
al form,NRG, whi
h was explored and applied to the Kondo model by Wilson (1975) and later alsoto the AIM (Krishna-murthy et al. 1980a,b). It 
ontributed substantially to a 
ompletepi
ture of the Kondo Problem [see Hewson (1993a)℄. One progresses iteratively to lowerenergy s
ales whilst observing the behaviour of the energy spe
trum of the Hamiltonian.One 
an regard the RG here as method to split the full problem with (too) many degreesof freedom into smaller problems on a 
ertain energy s
ale, whi
h 
an be solved. By
omparing the solution of these �sub-problems� the behaviour of the original �full system�
an be analysed. The details of the appli
ation to the AIM are given in the followingse
tion.2.1.1 NRG setup for the Anderson impurity modelThe numeri
al renormalisation group (NRG) for the Kondo and Anderson impurity modelhas been the subje
t of a large number of publi
ations and has for instan
e re
ently beenreviewed by Bulla et al. (2007). We will therefore keep our explanations here to a minimumand refer the reader for more details to referen
es (Hewson 1993a, Bulla et al. 2007, Bauer2007) and the original papers (Krishna-murthy et al. 1980a,b).The starting point is the Hamiltonian of the AIM (1.1) with a 
onstant density of statesin the 
ondu
tion band. For the NRG approa
h it is mapped to a dis
rete form, the so
alled linear 
hain Hamiltonian,
HN

And = 1/D(εd +
1

2
U)
∑

σ

c†d,σcd,σ +
U

2D

(

∑

σ

c†d,σcd,σ − 1

)2
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+

√

∆

πD

∑

σ

(f †0,σcd,σ + h.c.) +
N−1
∑

σ,n=0

γn+1(f
†
n,σfn+1,σ + h.c.), (2.1)whi
h is also depi
ted in �gure 2.1.PSfrag repla
ements

0 N − 1 N−1 1 2Figure 2.1: Linear 
hain model whi
h 
orresponds to Hamiltonian (2.1).This Hamiltonian has been s
aled by half the bandwidth D. As we 
an see the impuritypart (�rst line) of the Hamiltonian (2.1) is the same as in the original 
ontinuum model(1.1). The 
ondu
tion band and hybridisation term (se
ond line) have taken a di�erentform and are written in terms of an fn,σ-operator basis. It is important that in this basisonly the states 
orresponding to f0,σ 
ouple dire
tly to the impurity term. We will brie�ysket
h the steps of the transformation to get from (1.1) to (2.1).The major goal of the transformation is to 
learly separate how states of di�erent energys
ales in the ele
tron band 
ouple to the impurity degrees of freedom. A �rst step is toexploit the spheri
al symmetry of the problem and to expand the band ele
tron operatorsinto spheri
al harmoni
s, where only the s-wave states are important sin
e they 
ouple tothe impurity. The next step is a logarithmi
 dis
retisation of the band into intervals In =

(Λ−(n+1),Λ−n) with length ln = Λ−n−Λ−(n+1) 
hara
terised by the parameter Λ > 1. Notethat Λ → 1 
orresponds to the 
ontinuum model and ln+1/ln = Λ−1 gives the ratio by whi
hthe interval length de
reases. The idea of the logarithmi
 dis
retisation is that the energiesare 
learly separated in di�erent orders of magnitude (energy s
ale separation). In ea
hinterval the operators are expanded in a Fourier series. An approximation in the approa
his to negle
t higher p-states in the Fourier expansion and fo
us on the lowest 
omponent.This turns out be a good approximation for Λ ≃ 2 as analysed by Krishna-murthy et al.(1980a). Cru
ial for the setup of an iterative pro
edure is a basis 
hange. The startingpoint is a spatially lo
alised state at the impurity, whi
h is a superposition of states fromall intervals In. It is 
reated by f †0,σ on the �0th site� of a linear 
hain and is the onlystate that 
ouples dire
tly to the impurity. The rest of the basis states are generated in ahopping (tridiagonal) Hamiltonian form with o�diagonal elements γn as seen in equation(2.1).From the Hamiltonian (2.1) we 
an easily �nd the re
urren
e relation
HN+1

And = HN
And + γN+1(f

†
NσfN+1,σ + h.c.) (2.2)and thus (2.1) 
an be used to generate an iterative diagonalisation s
heme, when it is
onsidered for steps N = 0, . . . , Nmax. The numeri
al RG transformation is de�ned by

R(HN ) = HN+1 :=
√

ΛHN + ξN+1(f
†
NσfN+1,σ + h.c.). (2.3)
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orrelation physi
sThe de�nition of the linear 
hain parameters γN and ξN is (Hewson 1993a),
γn =

1
2 (1 + Λ−1)Λ(−n−1)/2(1 − Λ−n)

(1 − Λ−2n−1)1/2(1 − Λ−2n+1)1/2
, ξn =

D(1 + Λ−1)(1 − Λ−n)

2(1 − Λ−2n−1)1/2(1 − Λ−2n+1)1/2
. (2.4)The γn the property of falling o� with n, whi
h implies that one 
ouples to lower energeti

ontributions at later NRG steps. This is very important for the NRG approa
h, sin
ethe high energy physi
s should not be altered anymore, when we des
end to lower energiesalong the 
hain. Note that a s
aling fa
tor √

Λ is in
luded in the transformation. Itis 
hosen su
h that the hopping at step N is of order one and allows one to 
ompareex
itations from di�erent NRG steps. This is illustrated in �gure 2.2.
PSfrag repla
ementsE

N N + 1N + 1

√
Λ

Figure 2.2: Dis
rete energies from the diagonalisation: Des
ending to lower energies andres
aling in order 
ompare with earlier steps.In the iterative diagonalisation pro
edure we start by 
onsidering the de
oupled impu-rity problem, whi
h 
an easily be solved. After this one 
onsiders the two site Hamiltonian
H0

And involving the impurity and the �0-site�, and solves this numeri
ally. Then for ea
hsu

essive step N , the basis is always enlarged by an additional site on the linear 
hainand the Hamiltonian diagonalised. Sin
e the Hilbert spa
e in
reases exponentially the 
or-responding matri
es be
ome too large to be handled numeri
ally for a 
ertain iteration.At this point a trun
ation sets in, where states 
orresponding to energies higher than a
ertain 
uto� are negle
ted. This is motivated by the RG idea that higher energies areintegrated out and do not 
ontribute any more to the low energy physi
s. The eigenstates
an be 
hara
terised in terms of 
onserved quantum numbers. As mentioned in 
hapter 1for the Hamiltonian (1.1), the total 
harge and total spin are symmetries and give goodquantum numbers QN and SN . For the linear 
hain model the 
harge and spin operatorshave the form (measured relative to number of sites),
Q̂N =

N
∑

σ,n=0

f †n,σfn,σ + c†d,σcd,σ −N − 2 (2.5)and
SN =

N
∑

σ,n=0

Sn,f + Sd (2.6)
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al Renormalisation Group (NRG) 23(Quantum number 〈S2
N 〉 = SN (SN + 1)). Details about the extension of the basis at ea
hNRG step 
an be found in (Krishna-murthy et al. 1980a, appendix).In this series of transformations (2.3) the lowest ex
itations from the ground-state 
anbe followed when the energy s
ale after ea
h step is res
aled as des
ribed above. By �ttinge�e
tive models to the 
onverged low energy spe
tra di�erent �xed points 
hara
terising thebehaviour of the model 
an be identi�ed. It is possible that for intermediate energy s
alesa 
rossover from one �xed point to another 
an be observed, depending on the parametersinitially 
hosen for the RG �ow. It is not straightforward to give an RG transformation forthe 
oupling 
onstants in the AIM. As des
ribed by Hewson et al. (2004) one 
an, however,identify renormalised parameters as introdu
ed in se
tion 1.1 for all NRG steps, whi
h
hara
terise the behaviour of the model. How this is a
hieved is illustrated in appendixB. In se
tion 2.2 on the renormalised perturbation theory we will des
ribe the approa
hbased on these renormalised parameters.The major subje
t of this thesis is the study of situations with broken symmetry.Various modi�
ations o

ur to this standard setup when the NRG is applied to situationswith symmetry breaking and in the DMFT framework. We will point out later what themain di�eren
es are.2.1.2 Stati
 and dynami
 quantities from NRG 
al
ulationsThere are a number of extensions to the original s
heme des
ribed above, whi
h allow oneto 
al
ulate stati
 and dynami
 quantities, su
h as the o

upation number, the one-parti
leGreen's fun
tion and spin and 
harge sus
eptibilities (Sakai et al. 1989, Costi et al. 1994).In this se
tion we will brie�y explain the methods relevant for this thesis.Stati
 expe
tation values like the single o

upan
y 〈nd,σ 〉 and the double o

upan
y

〈nd,↑nd,↓〉 
an be 
al
ulated from matrix elements and the ground state energies only. Fora s
alar operator O the expe
tation value is given by
〈O〉 =

1

Z
tr[e−βHO] =

1

Z

∑

m

e−βEm〈m|O|m〉, (2.7)in terms of an eigenbasis {|m〉} ofH. The energy eigenvalues Em are 
al
ulated at ea
h NRGstep by diagonalising the Hamiltonian. We also need to evaluate the matrix elements, whi
h
an be done easily for the isolated impurity and then at ea
h iteration by transformingthem with the 
orresponding orthogonal matri
es for the basis 
hange. For details we referto Bauer (2007).One 
an also 
al
ulate the retarded impurity Green's fun
tion
Gd,σ(t) := −iθ(t)〈{cd,σ(t), c†d,σ(0)}〉 = −iθ(t)tr(ρ{cd,σ(t), c†d,σ(0)}). (2.8)Inserting an eigenbasis of the Hamiltonian and writing out the Heisenberg operators

cd,σ(t) = eiHtcd,σe−iHt, we �nd with the standard expression ρ = e−βH/Z and after Fourier
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orrelation physi
stransformation, Gd,σ(ω) =
∫

dt eiωtGd,σ(t) that the spe
tral density ρd,σ(ω) = −ImGd,σ(ω)
an be displayed in the Lehman representation as a sum of delta fun
tions
ρd(ω) =

1

Z

∑

m,n

|〈m|c†d|n〉|2δ[ω − (Em −En)](e−βEm + e−βEn). (2.9)The real part of Gd,σ(ω) 
an be obtained via prin
ipal value integration. The matrix el-ements 〈m|c†d,σ |n〉 are de�ned for the isolated impurity system and are then 
al
ulated atea
h NRG step with the help of the 
orresponding basis transformation (Krishna-murthy et al.1980a). The NRG 
al
ulations in this thesis are 
arried out at zero temperature. In pra
-ti
e, it is usually su�
ient to use a value for the temperature 1/β whi
h is smaller than allthe other energies appearing in the 
al
ulation. In order to obtain a 
ontinuous spe
trumwe have to broaden the ex
itation peaks in (2.9) numeri
ally,
ρ(ω) =

∑

i

wifb(ω, i), (2.10)where wi is the weight,
wi(m,n) =

1

Z
|〈m|Oα|n〉|2(e−βEm + e−βEn), (2.11)for a 
ertain ex
itation energy Ei(m,n) = Em − En . As des
ribed by Bulla et al. (1998) asuitable broadening fun
tion fb is an exponential on a logarithmi
 s
ale,

fb(ω, i) =
e−

b2

4 e−(log |ω|−log Ei)
2/b2

b |Ei|
√

π

. (2.12)Results obtained for this thesis make use of this broadening fun
tion unless otherwisestated. (2.12) has the advantage of broadening the spe
tral data a

ording to the infor-mation available, i.e. the few peaks for higher energies are broadened out more than theones on lower energies, where a lot of information is available. In the interpretation of thespe
tra one only has to bear in mind that the broadening fun
tion displays some asym-metry. In pra
ti
e in this simple s
heme, we have to use matrix elements and ex
itationsfrom di�erent NRG iterations and merge this information to obtain a spe
tral density onall energy s
ales. The idea behind this is that the most a

urate information for a typi
alenergy ω is given by the iteration N where ω ≃ Λ−(N−1)/2.Redu
ed density matrix s
hemeThe method to obtain spe
tra des
ribed in the last se
tion works well in many 
ases(Hewson 1993a, Bulla et al. 2007). It is, however, important to note that the �rst few NRGiterations, whi
h des
ribe the high energy features are not a

urate enough to 
apturea small symmetry breaking, for instan
e indu
ed by a magneti
 �eld. Therefore, thedynami
al quantities at high energies are not ne
essarily 
al
ulated with the 
orre
t ground
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e, the magnetisation obtained from a sum over the spe
tral weightdoes not give 
orre
t values when 
ompared with exa
t results (Hofstetter 2000). Onlyfor later steps, for lower energy s
ales, the symmetry breaking is 
al
ulated 
orre
tly and,therefore, the right ground-state obtained. As pointed out by Hofstetter (2000) in animproved 
al
ulation of spe
tra one really has to start with the ground-state obtained inthe last iteration. It is possible to do this by storing the information from all the NRG stepsand 
al
ulating the spe
tra �ba
kwards� from the ground state at the last NRG iteration.The 
orre
t implementation rests on the 
on
ept of the redu
ed density matrix ρred, wherewe think at stepm of the sites n > m as environment. This is illustrated in �gure 2.3. Su
ha pro
edure makes use of the full information obtained in the iterative diagonalisation.PSfrag repla
ements
0 NN − 1−1 m m+ 1

environment
Figure 2.3: Linear 
hain model, where iterations n > m are treated as environment forstep m.This 
on
ept of the redu
ed density matrix 
an be used to 
al
ulate a more a

urateimpurity Green's fun
tion (2.8). Sin
e the density matrix is only diagonal at the last stepof the NRG we obtain a di�erent expression for the Lehmann sum (2.9),

ρd,σ(ω) =
∑

m,n

αmnδ[ω − (Em − En)], (2.13)with
αmn := 〈m|c†d,σ |n〉∗

(

∑

l

〈m|c†d,σ |l〉〈l|ρ|n〉 + 〈m|c†d,σ|n〉
∑

l

〈m|ρ|l〉〈l|c†d,σ |n〉
)

. (2.14)Details of the implementation are des
ribed in referen
e Bauer (2007). This approa
h hasstill an unsatisfa
tory aspe
t as we have to mix information from di�erent iterations topat
h together the spe
tral fun
tion on all energy s
ales. A more rigorous s
heme alsoinvolving the 
on
ept of a redu
ed density matrix is explained in the following se
tion.Full density matrix (FDM) approa
hA di�erent approa
h to spe
tral fun
tions within the NRG framework is based on the
omplete basis set of the full linear 
hain of length N whi
h has been identi�ed byAnders and S
hiller (2005). The idea is to 
onsider the linear 
hain model (�gure 2.3)at step m < N as the full 
hain with all the hopping elements for 
onne
ting sites i > mset to zero rather than thinking of the 
hain being extended by one site at ea
h NRG step.A typi
al Fo
k basis state for this set of �environment� sites is denoted by
|em〉 := |Jm+1〉 ⊗ . . .⊗|JN 〉, (2.15)
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orrelation physi
swhere usually Jm = 1 . . . 4, numbering the basis state at site m, from empty to doubleo

upation. With this a basis state at iteration m, denoted by |r〉m 
an be extended to abasis state for the full 
hain of length N as a produ
t state
|r,em〉N := |r〉m ⊗|em〉 ≡|r,e;m〉, (2.16)where the last expression 
orresponds to the notation used by Anders and S
hiller (2005).Due to the trun
ation of the Hilbert spa
e and dis
arding of states during the NRG pro
e-dure it is not straight forward to see how one 
an 
onstru
t a 
omplete basis set. We willuse the notation, whi
h labels kept states |r〉K with |k〉 and dis
arded states |r〉d with |l〉.We denote the iteration at whi
h the trun
ation �rst sets in by m0. Then the set of allstates

{|k,e;m0〉}, {|l,e;m0〉}, (2.17)i.e. the set of all kept states equipped with the rest of the 
hain environment together withthe set of all dis
arded states plus environment, form a basis for the full Wilson 
hain.Going one step further to m0 + 1 a moment's thought shows that
{|k,e;m0 + 1〉}, {|l,e;m0 + 1〉} (2.18)is only a subset of a 
omplete basis for the 
hain, sin
e we have dis
arded the states

{|l,e;m0〉} at the step before. If, however, we 
olle
t the states
{|k,e;m0 + 1〉}, {|l,e;m0 + 1〉}, {|l,e;m0〉}, (2.19)we obtain again a 
omplete basis for the full 
hain. This 
an be extended to the lastiteration N and if we think of all states for this last step as dis
arded (just for notational
onvenien
e), then we 
an de�ne the Anders-S
hiller (AS) basis as the set of all dis
ardedstates equipped with environment,

{|l,e;m〉}m=m0 ,...,N . (2.20)This is a 
omplete basis for the full NRG 
hain.By de�nition of the AS basis we know that for the Hamiltonian at stage m, Hm
And,

|k,e;m〉 and |l, e;m〉 are exa
t eigenstates, Hm
And|α,e;m〉 = Eα

m|α,e;m〉 for α = l, k. Inorder to 
al
ulate spe
tral fun
tions one makes the fundamental approximation to assumethat they are also eigenstates of the Hamiltonian for the full 
hain H = HNmax
And . Thisamounts to saying that the e�e
t of further environment sites, whi
h due to the NRGsetup 
ouple with de
reasing energies, is only a small perturbation, and therefore

H|α,e;m〉 ≈ Eα
m|α,e;m〉. (2.21)In this sense the AS basis is an approximate eigenbasis for the linear 
hain model. This fa
t
an be used to evaluate spe
tral fun
tions (Peters et al. 2006, Wei
hselbaum and von Delft
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e out the environment states this approa
h involves the redu
ed densitymatrix ρred introdu
ed before. Sin
e we are using a 
omplete basis set one 
an easilysee, that for 
hains of any length, sum rules are satis�ed exa
tly. The details for themanipulations for a general spe
tral fun
tion of the form,
GAB(t) = −iθ(t)tr(ρ[A(t), B]ε) (2.22)(ε = −1 bosoni
, ε = 1 fermioni
), are given in appendix A.Self-energy with higher F -Green's fun
tionOn
e the impurity Green's fun
tion has been 
al
ulated a

ording to the pro
edure de-s
ribed above it is possible to extra
t the impurity self-energy from the Dyson equation

Σd,σ(ω) = G0
d,σ(ω)−1 −Gd,σ(ω)−1. (2.23)It turns out, however, that a better method to 
al
ulate the self-energy is to employ ahigher Green's fun
tion (Bulla et al. 1998), sin
e the di�eren
e in (2.23) 
an lead to largenumeri
al errors for small ω. The relevant expressions 
an be found in an equations ofmotion approa
h, where one �nds the relation

(ω − εd −K(ω))Gd,σ(ω) − UFσ(ω) = 1, (2.24)with the higher F -Green's fun
tion,
Fσ(ω) = 〈〈cd,σc

†
d,−σcd,−σ; c†d,σ〉〉ω (2.25)and K(ω) was given in (1.6). Identifying the self-energy as

Σσ(ω) = U
Fσ(z)

Gσ(ω)
, (2.26)yields in equation (2.24) the standard expression for the Green's fun
tion

Gσ(ω) =
1

ω − εd −K(ω) − Σσ(ω)
. (2.27)Hen
e, Σσ(ω) 
an be 
al
ulated from equation (2.26) on
e Gσ(ω) and Fσ(z) have beendetermined.2.2 The Renormalised Perturbation Theory (RPT)In se
tion 1.1 we have heuristi
ally introdu
ed renormalised parameters for the AIM andshown that stati
 response quantities 
an 
onveniently be expressed in terms of them. Quitegenerally in strongly 
orrelated systems, physi
al 
ouplings 
an 
hange their e�e
tive valuesubstantially, when one des
ends from the band energy to typi
al low energy s
ales. A
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orrelation physi
sprominent example of su
h a behaviour is Anderson's poor man's s
aling (Anderson 1970),where the antiferromagneti
 spin-spin 
oupling J is seen to in
rease when the energy islowered. In fa
t, sin
e the ideas of Landau's Fermi liquid theory it is well known that thelow energy physi
s of intera
ting parti
les 
an be des
ribed in terms of e�e
tive parameterswhi
h di�er from their original value (Abrikosov et al. 1963). As a prominent example
onsider heavy fermion systems, where the e�e
tive mass of 
harge 
arriers 
an vary upto a fa
tor of 500 from their bare mass. In models of strongly intera
ting ele
trons theoriginal parameters are usually of the order of the band width. In lo
ally 
orrelated systems,however, the behaviour is generally dominated by a low energy s
ale, for instan
e the Kondotemperature TK. If we are interested in the properties of the order TK it is very 
onvenientto 
hoose the 
orresponding e�e
tive low energy parameters as a starting point for thedes
ription of the behaviour.For a perturbative approa
h it is important to 
hoose an expansion point with anappropriate energy s
ale su
h that other e�e
ts enter as 
orre
tions. Therefore, it is a goodstrategy in systems where the renormalisation e�e
ts are large to work with renormalised
ouplings on the low energy s
ale rather than the bare parameters. Su
h an approa
h, arenormalised perturbation theory, 
an be 
onstru
ted, and for the AIM it has the propertythat the lowest order results are asymptoti
ally exa
t (Hewson 1993b, 2001). One has to be
areful, however, sin
e by using e�e
tive parameters renormalisation e�e
ts are impli
itlytaken into a

ount and must not be in
luded again. Similar as in the high energy �eldtheoreti
 approa
hes (Ryder 1996) 
ounter-terms, whi
h are introdu
ed there to 
an
eldivergen
es, have to be introdu
ed in order to satisfy renormalisation 
onditions (Hewson1993b, 2001). In the following se
tions we explain the details for the formalism of the RPTbased on these Fermi liquid parameters for the AIM in a magneti
 �eld.2.2.1 The RPT setupFor the setup of the RPT it is 
onvenient to work in the fun
tional integral formalism.The Anderson impurity model from equation (1.1) is expressed as
ZAIM =

∫

D(dσ , dσ)D(ck,σ, ck,σ)e
−

β
R

0

dτLAIM(τ)
, (2.28)with

LAIM =
∑

k,σ

ck,σ(τ)(
∂

∂τ
+ εk)ck,σ(τ) +

∑

σ

dσ(τ)(
∂

∂τ
+ εd,σ)dσ(τ) +

∑

k,σ

Vk(ck,σ(τ)dσ(τ) + h.c.) + Und,↑(τ)nd,↓(τ) ≡ LAIM(εd,σ ,∆, U), (2.29)where we have allowed for a magneti
 �eld h, εd,σ = εd−σh and ∆ = πV 2/2D in the wide
ondu
tion band limit as explained in the �rst 
hapter. ck,σ(τ) and dσ(τ) are Grassman
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aling the band ele
tron �elds ck,σ → ck,σ/Vk and integrating them out thetotal a
tion be
omes
S = −

∑

σ

β
∫

0

dτ

β
∫

0

dτ ′ dσ(τ)G0(τ − τ ′)−1dσ(τ ′) + U

β
∫

0

dτ nd,↑(τ)nd,↓(τ) ≡ S0 + SU , (2.30)where
G0(τ) =

1

β

∑

n

e−iτωn
1

iωn − εd,σ + i∆sgn(ωn)
. (2.31)The full d-site retarded Green's fun
tion (analyti
ally 
ontinued to the real axis ω ∈ R),whi
h takes through the self-energy Σσ(ω, h) all intera
tion e�e
ts into a

ount, reads

Gd,σ(ω) =
1

ω − εd,σ + i∆ − Σσ(ω, h)
. (2.32)The a
tion (2.30) is a 
ommon starting point for perturbation theory in the bare intera
tion

U , by whi
h an approximation for Σσ(ω, h) 
an be 
al
ulated.As explored by Hewson (1993b, 2001) the Fermi liquid properties of the AIM, 
an beexpressed in terms of renormalised parameters, whi
h are obtained by expanding the self-energy at ω = 0. This approa
h rests on basi
 properties of the self-energy, −ImΣσ(ω) ∼ ω2(Luttinger 1961), whi
h essentially de�ne the Fermi liquid regime. With the usual de�nitionof the wavefun
tion renormalisation
zσ(h)−1 := 1 − ∂

∂ω
ReΣσ(ω = 0, h), (2.33)the renormalised parameters are de�ned by

∆̃σ(h) := zσ(h)∆, ε̃d,σ(h) = zσ(h)[εd,σ + ReΣσ(0, h)]. (2.34)The remainder of the expansion of the self-energy Σrem
σ (ω, h) de�nes the renormalisedself-energy Σ̃σ(ω, h),

Σ̃σ(ω, h) = zσ(h)Σrem
σ (ω, h). (2.35)With these parameters we 
an write the impurity Green's fun
tion (2.32) equivalently as

Gd,σ(ω) =
zσ(h)

ω − ε̃d,σ(h) + i∆̃σ(h) − Σ̃σ(ω, h)
. (2.36)A renormalised intera
tion Ũ(h) is de�ned by the full, antisymmetrised, renormalised fourpoint vertex fun
tion at zero frequen
y,

Ũ(h) = Γ̃↑,↓(0, 0;h) = z↑(h)z↓(h)Γ↑,↓(0, 0;h). (2.37)This quantity is usually interpreted as the intera
tion between quasiparti
les in Fermiliquid theory (Abrikosov et al. 1963).
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orrelation physi
sIn analogy to the renormalised perturbation theory in quantum �eld theory (Ryder1996, 
hapter 9), where the theory is written as LB = L + Lct (LB bare Lagrangian, Lct
ounter-terms) we 
an de�ne a renormalised perturbation theory by identifying
LAIM(εd,σ,∆, U) = LrAIM(ε̃d,σ , ∆̃, Ũ) + Lr

ct(λ1, λ2, λ3), (2.38)where the 
ounter-term Lagrangian reads
Lr

ct(λ1, λ2, λ3) =
∑

σ

d̄r
σ(τ)(λ2

∂

∂τ
− λ1)d

r
σ(τ) + λ3n

r
d,↑(τ)n

r
d,↓(τ). (2.39)Note that in the renormalised theory we are working with renormalised �elds dr

σ(τ) =

dσ(τ)/
√
zσ in LrAIM(ε̃d, ∆̃, Ũ ) and Lr

ct(λ1, λ2, λ3). The parameters λi have to be determinedby the renormalisation 
onditions for the renormalised self-energy
Σ̃σ(0, h) = 0,

∂Σ̃σ(0, h)

∂ω
= 0, (2.40)and for the full renormalised vertex at zero frequen
y

Γ̃↑,↓(0, h) = Ũ(h). (2.41)These have to be satis�ed to all orders in perturbation theory su
h that renormalisatione�e
ts are not over-
ounted. The parameter λ1 also 
arries a spin label for the symmetri
model with magneti
 �eld and λ2 be
omes spin-dependent in the asymmetri
 model withmagneti
 �eld. We have omitted su
h a notation for simpli
ity. In order to set up su
han RPT it is useful to introdu
e sour
e terms and de�ne generating fun
tionals as done inthe following se
tion.2.2.2 Fun
tional integral des
ription in the 1PI formalismThe generating fun
tional for the renormalised theory is given by
Zr[J ] =

∫

D(dr
σ , d

r
σ)e−Sr [dr

σ ,d
r
σ ]−Sc[dr

σ ,d
r
σ]−SJ [dr

σ,d
r
σ ]. (2.42)The renormalised parameter a
tion Sr 
an be obtained from LAIM(ε̃d,σ, ∆̃, Ũ ) by integrat-ing out the band ele
trons as in the last se
tion,

Sr = −
∑

σ

β
∫

0

dτ

β
∫

0

dτ ′ d
r
σ(τ)G̃0

σ(τ − τ ′)−1dr
σ(τ ′) + Ũ

β
∫

0

dτ nr
d,↑(τ)n

r
d,↓(τ) (2.43)where

G̃0
σ(τ) =

1

β

∑

n

e−iτωn
1

iωn − ε̃d,σ + i∆̃σsgn(ωn)
(2.44)
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tion for the 
ounter-terms 
an be written as
Sc = −

∑

σ

β
∫

0

dτ

β
∫

0

dτ ′ d
r
σ(τ)Gc,0

σ (τ − τ ′)−1dr
σ(τ ′) + λ3

β
∫

0

dτ nr
d,↑(τ)n

r
d,↓(τ), (2.45)where

Gc,0
σ (τ) =

1

β

∑

n

e−iτωn
1

λ2iωn + λ1
. (2.46)The one-parti
le irredu
ible (1PI) sour
e term is de�ned as

SJ =
∑

σ

β
∫

0

dτ [Jσd
r
σ(τ) + d

r
σ(τ)Jσ(τ)]. (2.47)As usual we 
an introdu
e a generating fun
tional for 
onne
ted Green's fun
tions,

W r[J ] = logZr[J ], (2.48)and the renormalised one-parti
le Green's fun
tion 
an be 
al
ulated as
Gd,σ(iωn) = − δ2W r[J ]

δJσ(iωn)δJσ(iωn)

∣

∣

∣

∣

J=0

. (2.49)Standard Setup of the renormalised perturbation theoryThe standard way to generate a renormalised perturbation expansion from (2.42) is towrite
Zr[J ] =

∫

D(dr
σ, d

r
σ)e

−Sr
0 [dr

σ,d
r
σ ]−Sr

Ũ
[dr

σ ,d
r
σ ]−Sc

0[dr
σ,d

r
σ ]−Sc

λ3
[dr

σ,d
r
σ ]−SJ [dr

σ,d
r
σ ] (2.50)

= e
−Sr

Ũ
[δJσ ,δ

Jσ
]−Sc

0[δJσ ,δ
Jσ

]−Sc
λ3

[δJσ ,δ
Jσ

]
∫

D(dr
σ, d

r
σ)e−Sr

0 [dr
σ,d

r
σ ]−SJ [dr

σ,d
r
σ ] (2.51)

= e
−Sr

Ũ
[δJσ ,δ

Jσ
]−Sc

0[δJσ ,δ
Jσ

]−Sc
λ3

[δJσ ,δ
Jσ

]Zr
0 [J ]. (2.52)where by Gaussian integration

Zr
0 [J ] = e

−
P

σ

β
R

0

dτ
β
R

0

dτ ′ Jσ(τ)G̃0
σ(τ−τ ′)Jσ(τ ′)

. (2.53)In this setup all the 
ounter-terms e−Sc
0 and e

−Sc
λ3 are treated dire
tly as intera
tion termsand this is how the 
ounter-terms are usually introdu
ed in quantum �eld theory (Ryder1996, 
hapter 9). They give rise to three additional Feynman rules for the diagrams:1. A 
ontra
tion multiplied by λ1, whi
h we will denote by (◦) in the diagrams.2. A 
ontra
tion with the additional fa
tor λ2iωn or λ2ω for T = 0 after Fourier trans-formation, whi
h we will denote by (�) in the diagrams.
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orrelation physi
s3. An intera
tion term with 
onstant λ3, whi
h has exa
tly the same stru
ture as thestandard AIM intera
tion term and 
an be denoted by an intera
tion vertex withside-s
ript λ3.The easiest way to analyse (2.52) is by expanding the exponential in Zr
0 [J ] in termsof free propagators, as given in (2.44), �rst and then a
t with the fun
tional derivativesfrom the intera
tion terms in SŨ [δJσ , δJσ

], Sc
0[δJσ , δJσ

] and Sc
λ3

[δJσ , δJσ
] as a 
ontra
tionto verti
es. In order to 
al
ulate the one-parti
le Green's fun
tion one needs to leave twoexternal sour
e terms open for the last fun
tional derivatives, as seen from (2.49), andfor the two-parti
le Green's fun
tion (and full vertex) one needs four. Graphi
ally, this isusually written out with lines (��) for the propagators Gr

0 and 
rosses (x) for the sour
eterms J . The fun
tional derivative δJk(τ) then just takes the 
ross away and relates it totime τ . It is 
onvenient to 
al
ulate diagrams after Fourier transformation. Rather thanthe Green's fun
tions we fo
us on the self-energy and vertex fun
tion.An indu
tive proof that su
h a renormalised perturbation theory 
an be 
arried outorder by order is given in appendix C. We need to prove that the renormalisation 
onditions(2.40) and (2.41) 
an always be satis�ed. For this it is helpful to 
lassify the 
ontributionsto the proper self-energy into three di�erent types:
• (a) terms ΣŨ(iωn) 
oming purely from AIM intera
tion term e−Sr

Ũ . They 
orrespondto the diagrams in the standard perturbation theory of the AIM.
• (b) terms 
oming purely from e−Sc

0 , whi
h 
orrespond to trivial 
ounter-terms whi
h
an be 
olle
ted to a self-energy 
ontribution Σct(iωn) = −[λ1 + λ2iωn].
• (
) mixed terms Σmix

λ1,λ2,λ3
(iωn) generated by the 
ombination e−Sr

Ũ , e−Sc
0 , and e

−Sc
λ3 .The perturbative renormalised self-energy to order n is given by

Σ̃(n)(iωn) =
n
∑

k=1

[

∑

m

Σ
(k,m)

Ũ
(iωn) +

∑

m

Σ
mix,(k,m)
λ1,λ2,λ3

(iωn)
]

+ Σct(iωn), (2.54)where Σ(k,m) denotes the mth diagrammati
 
ontribution to the self-energy of order k. Wehave omitted the spin index for notational simpli
ity. In order to 
lassify di�erent ordersof the perturbation theory it is useful to think of the 
ounter-term parameters as expandedin Ũ (Hewson 2001),
λi =

∑

k

λ
(k)
i Ũk. (2.55)Then for ea
h order of the perturbation theory we have to determine the 
oe�
ients λ(n)

iin this expansion, su
h that (2.40) and (2.41) are satis�ed, whilst all mixed terms for therenormalised self-energy are in
luded.In order to illustrate how the RPT works we will brie�y dis
uss the expansion tose
ond order for the symmetri
 AIM with zero magneti
 �eld at T = 0. The �rst and
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Σ
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0
∫

−∞

dω [−ImG̃0
−σ(ω)]/π ≡ Ũ ñ−σ. (2.56)The full vertex to �rst order is trivial and the se
ond renormalisation 
ondition (2.41)yields λ(1)

3 = 0. Σct
σ (ω), shown in �gure 2.5 (left), is determined from (2.56) and the �rstrenormalisation 
ondition (2.40) gives λ(1)

1 = ñ−σ and λ(1)
2 = 0.Up to se
ond order the only dynami
 diagram 
ontributing is the one in �gure 2.4(right), whi
h we denote by Σ

(2,1)

Ũ1,σ
(ω). A stati
 term arises from the double tadpole diagramsimilar to the one in 2.4 (left), whi
h gives Σ

(2,2)

Ũ,σ
= Ũ2ñ2

−σ. We also get a 
ontribution to
Σmix (
), whi
h 
omes from mixing the �rst order 
ounter-term 
ontribution and the �rstorder diagram,

Σmix,(2,1)
σ = −i Ũ

2λ
(1)
1

2π

∞
∫

−∞

dω G̃0
−σ(ω)2 = −Ũ2λ

(1)
1 ρ̃0

d,−σ(0, h) (2.57)It is shown in �gure 2.5 (middle). Another diagram, whi
h 
ould appear in prin
iple is thetadpole diagram with λ3 intera
tion Σ
mix,(2,2)
σ = λ

(2)
3 Ũ2ñ−σ.
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2 = Σ
(2,2)

Ũ,σ
(0)′/Ũ2. This determines the renormalisedself-energy to se
ond order with all 
ontributions a

ording to (2.54). To 
larify how these
ond additional Feynman rule would be in
orporated we give the simplest diagram forthis term in �gure 2.5 (right), whi
h is a
tually of third order.

Σmix,(3,1)
σ = −i Ũ

3λ
(2)
2

2π

∞
∫

−∞

dω ωG̃0
−σ(ω)2. (2.58)Whilst for this 
ase it is straight forward to 
arry out the RPT one 
an imagine thatfor higher order 
al
ulations with larger number of standard and mixed diagrams it be-
omes more and more 
umbersome to 
ompute all 
ontributions to the RPT. Third order
al
ulations have been dis
ussed by Hewson (2001). It might be easier to alter the setupof the RPT slightly in order not to deal with all the 
ounter-terms separately and we willdis
uss a possibility in the following se
tion.2.2.3 Alternative formulations and extensionsThe perturbation theory 
an be given in a di�erent formulation by in
luding the �free
ounter-terms� derived from Sc

0 into the propagator, whi
h then takes the form
Gr

σ,λ1,λ2
(ω) =

1

ω − ε̃d,σ + i∆̃σ + λ1 + λ2ω
. (2.59)Sin
e the 
ounter-term intera
tion term Sc

λ3
has the same form as the standard intera
tionterm, also these terms 
an be 
olle
ted and the perturbation theory 
arried out in Ũ1 ≡

Ũ + λ3. The renormalisation 
onditions be
ome self-
onsisten
y equations in that 
ase.Although su
h a setup at �rst sight appears promising due the mu
h simpler stru
tureof the perturbation expansion it turns out that it is di�
ult to 
arry out the expansionin this form. We had seen in the last se
tion that the 
ounter-term parameters in
lude
ontributions to di�erent order in Ũ [
f eq. (2.55)℄. The setup de�ned by (C.15) and the freepropagator (2.59) implies that 
ounter-term 
ontributions to all orders are in
luded evenin the low order diagrams dis
ussed in the last se
tion. In fa
t, if the exa
t expressionsof the 
ounter-terms, whi
h 
an be derived from the identity (2.38), were used in this
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h the theory would formally lead ba
k to the bare perturbation theory and nothingnew would have been a
hieved. More details for this kind of approa
h are des
ribed in theappendix C.The idea of expanding in an e�e
tive renormalised intera
tion Ũ1 turns out to befruitful, when we 
onsider an RPT expansion, whi
h sums up a 
ertain 
lass of diagramsto all orders rather than all diagrams up to 
ertain order in Ũ . This is best illustrated forthe dynami
 transverse spin sus
eptibility χt(ω) as de�ned in equation (1.26), whi
h we
an 
al
ulated by an RPA-like sum of repeated quasiparti
le s
attering diagrams (Hewson2006). This is depi
ted in �gure 2.7.PSfrag repla
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le propagators in equation (2.44) and the inter-a
tion term vertex is given by Ũ1 = Ũhσ
p−σ. Here the series in terms of repeated quasiparti
les
attering yields the expression

χt(ω) =
1

2

Πhσ
p−σ(ω)

1 − Ũhσ
p−σΠhσ

p−σ(ω)
, (2.60)with the appropriate e�e
tive intera
tion Ũhσ

p−σ. We have introdu
ed the pair propagator
Πhσ

p−σ(ω), whi
h is given by
Πhσ

p−σ(ω) = −
∫

dω1

2πi
G̃0

σ(ω + ω1)G̃
0
−σ(ω1). (2.61)It 
an be solved analyti
ally and the expression is given in se
tion 3.4.2 in the next 
hapter.Note that Πhσ

p−σ(0) = ρ̃0
d(0). We still have to satisfy the renormalisation 
onditions (2.40)and (2.41), but as we have not 
al
ulated the self-energy or vertex this seems di�
ult. How
an we therefore determine the quantity Ũhσ

p−σ? As illustrated by Hewson (2006) we 
anuse the exa
t stati
 result for the sus
eptibility from the �rst 
hapter (1.14) to determinethis quantity by equating the result for ω → 0 in (2.60) to (1.14). Hen
e, we �nd
Ũhσ

p−σ =
Ũ

1 + Ũ ρ̃0
d(0)

. (2.62)It turns out that the dynami
 sus
eptibility 
an be des
ribed quite a

urately in su
h aformulation on all energy s
ales (Hewson 2006).
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orrelation physi
sFor the renormalised self-energy one 
an make a similar approximation and sum up therepeated s
attering terms as shown in �gure 2.7,
Σr,ph

σ (ω) = Ũ2
1

∫

dω2

2πi
2χσ

s⊥(ω2)G̃
0
−σ(ω − ω2). (2.63)The pro
esses of spin �u
tuations taken into a

ount in su
h a summation are likely to bethe most dominant ones in the Kondo regime. The e�e
tive intera
tion Ũ1 has to be foundfrom the renormalisation 
ondition (2.41) for the full vertex, whi
h for this simple RPAlike approximation is just a sum of the terms as shown in �gure 2.7. From this we �nd

Ũ1 =
Ũ

1 + Ũ ρ̃0
d(0)

. (2.64)whi
h agrees with the earlier result for the sus
eptibility. In order to 
al
ulate the renor-malised self-energy Σ̃σ(ω) we still have to in
lude the 
ounter-terms and in the moststraightforward approa
h is to only take the trivial 
ounter-terms Σct(ω) into a

ountand determine λ1 and λ2 by the 
ondition (2.40). Results for this kind of 
al
ulations willbe presented in 
hapter 3.An extension of this simple repeated s
attering analysis 
an be given by 
onsidering aself-
onsistent theory with fully dressed propagators. This is most 
onveniently des
ribedin the two-parti
le irredu
ible (2PI) framework and an approa
h based on a LuttingerWard fun
tional. We have des
ribed the details for su
h an approa
h in appendix C.3.2.3 The Dynami
al Mean Field Theory (DMFT)So far in this 
hapter we have 
on
entrated on the des
ription of methods suitable forthe solution of impurity models like the AIM. Another subje
t of this thesis is, however,to study strong 
orrelation e�e
ts in latti
e models like the Hubbard model. As realizedby Metzner and Vollhardt (1989), and elaborated on by Müller-Hartmann (1989), it isenlightening for the understanding of 
orrelation e�e
ts in latti
e models to study the limitof in�nite dimensions, d → ∞. With the appropriate s
aling of the hopping amplitude, itwas found that the self-energy be
omes a lo
al quantity, i.e. does not depend on k anymore,but retains the full frequen
y dependen
e. The limit thus generates a large simpli�
ationwithout making the problem trivial. Based on these 
onsiderations an approa
h linkingthe solution for a latti
e model to that of a lo
al model was developed, the dynami
al mean�eld theory (DMFT). The essential idea of the DMFT is to map the latti
e model to asingle site quantum impurity model embedded in an e�e
tive medium (Georges et al. 1996),whi
h is determined self-
onsistently [also Lo
al Impurity Self-
onsistent Approximation(LISA)℄. In 
ontrast to standard mean-�eld or Hartree Fo
k theory, DMFT fully takes intoa

ount lo
al quantum �u
tuations and hen
e the many-body 
hara
ter of the problemis retained. One 
an show that DMFT is exa
t in the limit d → ∞. For details of thederivation of the main equations we refer to the review arti
le by Georges et al. (1996).



2.3 The Dynami
al Mean Field Theory (DMFT) 37To be more spe
i�
, we 
onsider the Hubbard model (1.29) whi
h is written 
onvenientlyin the imaginary time path integral formulation as
Z =

∏

i

∫

D(ci,σ, ci,σ)e−S[ci,σ(τ),ci,σ(τ)] (2.65)with the a
tion
S[ci,σ(t), ci,σ(t)] =

β
∫

0

dτ
∑

i,j,σ

ci,σ(τ)(δij
∂

∂τ
− tij − δijµ)ci,σ(τ) + U

∑

i

ni↑(τ)ni↓(τ). (2.66)The DMFT approa
h is based on deriving an e�e
tive a
tion for a spe
ial latti
e site,usually termed the �0�-site. This is a
hieved by formally integrating out the degrees offreedom of the other latti
e sites. The e�e
tive a
tion on the �0�-site reads
Se� = −

β
∫

0

dτ

β
∫

0

dτ ′
∑

σ

c†0,σ(τ)G−1
0 (τ − τ ′)c0,σ(τ ′) + U

β
∫

0

dτ
∑

i

n0,↑(τ)n0,↓(τ), (2.67)where we have not expli
itly allowed for any kind of symmetry breaking. We have intro-du
ed the e�e
tive Weiss �eld (or dynami
al mean �eld) G−1
0 (τ) for the �0�-site. In analogyto 
lassi
al mean �eld theory it has to be determined self-
onsistently, but in 
ontrast tothe latter G−1

0 (τ) is fun
tion of τ , whi
h mimi
s the latti
e dynami
s. For a given G−1
0 (τ),

Se� in (2.67) determines the dynami
s at the 0-site, whi
h is still an intera
ting problem. Inthe DMFT approa
h the latti
e self-energy is entirely lo
al and the latti
e Green's fun
tion
an be written in the form
Glat

k (iωn) =
1

iωn + µ− εk − Σlat(iωn)
. (2.68)From this we 
an de�ne the lo
al latti
e Green's fun
tion Gloc(iωn) by

Gloc(iωn) :=
1

N

∑

k

Glat
k (iωn) =

∫

dε
ρ0(ε)

iωn + µ− ε− Σlat(iωn)
= HT[ρ0](ζ), (2.69)where ζ := iωn + µ − Σlat(iωn). HT[ρ0](ω) is the Hilbert transform of the free ele
trondensity of states ρ0(ε) =

∑

k δ(ε− εk),
HT[ρ0](ζ) =

∫

dξ
ρ0(ξ)

ζ − ξ
. (2.70)In the derivation of the DMFT equations [see Georges et al. (1996)℄ one �nds quite gen-erally the Dyson-like relation between the e�e
tive Weiss �eld, the lo
al latti
e Green'sfun
tion and the self-energy,

G−1
0 (iωn) = Σlat(iωn) +

1

HT[ρ0](ζ)
= Σlat(iωn) +Gloc(iωn)−1. (2.71)



38 Methods for strong 
orrelation physi
sIn the DMFT framework the latti
e self-energy Σlat(iωn) is the same as the self-energyof the e�e
tive impurity problem Σimp(iωn); also the Green's fun
tion of the e�e
tiveimpurity model and Gloc(iωn) 
oin
ide. As an e�e
tive impurity problem (2.67) we 
an
onsider the AIM in the path integral formalism (2.29) with the e�e
tive a
tion
S = −

∑

σ

β
∫

0

dτ

β
∫

0

dτ ′ dσ(τ)G0(τ − τ ′)−1dσ(τ ′) + U

β
∫

0

dτ nd,↑(τ)nd,↓(τ) (2.72)where generally
G0(τ) =

1

β

∑

n

e−iτωn
1

iωn − εd −K(iωn)
. (2.73)with K(iωn) given in the earlier equation (1.6).By 
omparison of (2.72) with (2.67) one 
an formally identify G−1

0 (τ − τ ′) = G0(τ −
τ ′)−1. Therefore, the properties of the medium have to be en
oded in the generally 
omplexand iωn-dependent hybridisation fun
tion K(iωn) (often denoted as 
omplex ∆(iωn)). Forthis reason it 
annot be identi�ed with just an imaginary 
onstant i∆, as for the impuritymodel with a �at 
ondu
tion band density of states. In this framework we �nd thereforean expli
it expression for the Weiss e�e
tive �eld

G−1
0 (iωn) = iωn + µ−K(iωn), (2.74)where one identi�es εd = −µ. This relates the DMFT approa
h (2.67) to an e�e
tive AIMas the 
orresponding impurity model to be studied.In pra
ti
e, we use a 
ertain input for the medium, K(0)(iωn), to 
al
ulate the self-energy of the 
orresponding e�e
tive impurity problem Σimp(iωn) with the NRG approa
h.This self-energy is identi�ed with the lo
al latti
e self-energy Σlat(iωn) and used to 
al
ulatethe lo
al latti
e Green's fun
tion with (2.69). From equation (2.71) we 
an then 
al
ulatethe new e�e
tive Weiss �eld G−1
0 (iωn) and K(1)(iωn) from (2.74). This 
loses the self-
onsisten
y 
y
le, whi
h has to be iterated until 
onvergen
e, K(m)(iωn) = K(m+1)(iωn),is rea
hed. This approa
h is 
ompletely general and does not rely on a spe
i�
 density ofstates ρ0(ε). For the Bethe latti
e with a semi
ir
ular density of states,

ρ0(ε) =
1

2πt2

√

4t2 − ε2, |ε| < 2t, (2.75)analyti
 expressions for the Hilbert transforms 
an be given and the equations simplify(Georges et al. 1996). In this thesis we employ the NRG as solver for the e�e
tive impu-rity problem, and therefore have to map a given hybridisation fun
tion K(iωn) onto the
orresponding linear 
hain problem [
f. equation (2.1)℄. A pro
edure to do this has beendevised by Bulla et al. (1997), and is also des
ribed by Bauer (2007) for di�erent 
ases.For situations with broken symmetry some of the expressions have to be modi�ed, but thegeneral setup is as des
ribed here.
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Chapter 3Field dependent quasiparti
ledynami
s in the Anderson impuritymodel

Try to learn something about every-thing and everything about some-thing. Thomas H. Huxley

In the following three 
hapters, whi
h form the the se
ond part of the thesis, we presentresults for lo
ally strongly 
orrelated ele
trons in the Anderson impurity model (AIM). As a
ommon theme of this thesis we are interested in the situation with broken symmetry. TheAIM does not order spontaneously in any parameter range, it is, however, interesting tostudy its response to an external symmetry breaking. In this 
hapter we study the e�e
t ofa magneti
 �eld. The analysis is a 
ombination of analyti
al and numeri
al methods basedon the NRG and RPT framework. First we des
ribe the behaviour of the �eld dependentrenormalised parameters and show how the low energy response 
an be 
hara
terised interms of them. In later se
tions we present dynami
 response fun
tion for higher energiesdedu
ed from NRG and RPT 
al
ulations.3.1 Strongly 
orrelated ele
trons in a �eldEle
trons in strongly 
orrelated systems are parti
ularly sensitive to the appli
ation ofmagneti
 �elds. One reason is that strong 
orrelations are usually a 
onsequen
e of theintera
tion of ele
trons with enhan
ed spin �u
tuations, and these �u
tuations 
ouplestrongly to a magneti
 �eld. Another reason is that there is a low temperature s
ale
T ∗ (T ∗ ≪ TF) indu
ed whi
h plays the role of an e�e
tive Fermi temperature TF. Thee�e
ts of a magneti
 �eld H in general depend on the ratio of the two energy s
ales µBHand kBTF. In a weakly 
orrelated metal µBH/kBTF ≪ 1, but in a strongly 
orrelatedsystem the relevant ratio is µBH/kBT

∗, whi
h 
an be of order unity. This sensitivitymeans that a magneti
 �eld is an important tool in the experimental investigation ofstrongly 
orrelated metalli
 systems, su
h as magneti
 impurities, quantum dots, heavy
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le dynami
s in the Anderson impurity modelfermions and transition metal oxides. In the next se
tion we show how it is possible todes
ribe the quasiparti
les in a magneti
 �eld in the Fermi liquid regime by �eld dependentparameters. We fo
us on the parti
le-hole symmetri
 Anderson model in the next se
tionsas in referen
e Hewson, Bauer and Koller (2006). The non-symmetri
 
ase is studied in asimilar approa
h in Bauer and Hewson (2007a). The AIM (1.1) with the lo
al magneti
�eld term (1.17) forms basis for the 
al
ulations. For the symmetri
 AIM, the 
al
ulations
an be 
arried out either dire
tly with the �eld dependent model or we 
an use the mappingto the negative U model, whi
h is not symmetri
 for �nite �eld, as explained in se
tion1.1.2. For the NRG 
al
ulation the latter has the advantage of preserving all spin and
harge quantum numbers as a symmetry and thus redu
ing the numeri
al e�ort.First we dis
uss the �eld dependent behaviour of the renormalised parameters intro-du
ed earlier. On
e the renormalised parameters are known, the impurity spin and 
hargesus
eptibility, the spe
i�
 heat 
oe�
ient and the indu
ed impurity magnetisation at T = 0for arbitrary magneti
 �eld 
an be expressed by substituting into the relevant exa
t formu-lae derived from a renormalised perturbation theory. The leading temperature dependent
orre
tions to the sus
eptibility, magnetisation, the �nite 
ondu
tivity due to s
atteringfrom an impurity in a metalli
 host, and for the 
ondu
tan
e through a quantum dot willalso be 
al
ulated in a later se
tion. It is interesting to see how the response 
oe�
ientsbehave when the �eld strength is in
reased. A number of physi
al properties are foundto 
hange qualitatively in the strongly 
orrelated 
ase for magneti
 �eld strengths in therange 0 < gµBH < TK, where TK is the Kondo temperature. This should be a physi
allya

essible magneti
 �eld range for many systems. The T 2 
oe�
ient of the magneti
 sus-
eptibility, the 
ondu
tivity from a magneti
 impurity in the strong 
orrelation regime,and the 
ondu
tan
e through a quantum dot all 
hange sign in this magneti
 �eld range.We also des
ribe these systems beyond the low energy regime with the NRG andRPT method in se
tion 3.4. The approa
h developed here is a general one and is equallyappli
able to other impurity models (Hewson et al. 2004) and to latti
e models as will beseen in 
hapter 6. For latti
e models, for whi
h dynami
al mean �eld theory is appli
able,similar NRG methods to those employed here 
an be used. It is important to bear inmind that the approa
h is not restri
ted to the NRG method, the relevant renormalisedparameters 
ould also be estimated using other theoreti
al te
hniques, variational methodsfor example.3.2 Field dependent renormalised parametersFor the 
hara
terisation of the low energy �xpoints of the AIM we had introdu
ed renor-malised parameters ε̃d, ∆̃ and Ũ in se
tion 1.1. In se
tion 2.2.1 we de�ned them morerigorously in terms of the self-energy in
luding an expli
it dependen
e on the magneti
�eld h. As �rst demonstrated by Hewson et al. (2004) the �eld dependent parameters 
anbe dedu
ed from the low energy ex
itations in an NRG 
al
ulation. The details of how this



3.2 Field dependent renormalised parameters 43is a
hieved are given in appendix B. In this se
tion we want to dis
uss the behaviour ofthese parameters, as the magneti
 �eld h is varied, fo
using on the parti
le-hole symmetri

ase. Before dis
ussing the �eld dependen
e of the parameters let us give the generalisationof some of the equations from the �rst 
hapter to the 
ase with magneti
 �eld. The lowenergy s
ale T ∗ is de�ned by 4T ∗ = π∆̃(0) in the following, su
h that in the Kondo regime
T ∗ = TK. The Friedel sum rule (Friedel 1956, Langreth 1966) is appli
able to ea
h spin
omponent, and in terms of the renormalised parameters (2.34) it reads

nd,σ =
1

2
− 1

π
tan−1

(

ε̃d,σ(h)

∆̃(h)

)

. (3.1)For parti
le hole symmetry we 
an write ε̃d,σ(h) = −σε̃d(h). Thus from (3.1), we 
andedu
e the indu
ed impurity magnetisation M(h) = m(h)/gµB at T = 0,
m(h) =

1

2
(nd,↑ − nd,↓) =

1

π
tan−1

(

ε̃d(h)

∆̃(h)

)

. (3.2)It is therefore spe
i�ed by the two parameters ε̃d(h) and ∆̃(h) that 
hara
terise the non-intera
ting quasiparti
les. The free quasiparti
le density of states (1.13) generalises to
ρ̃0

d,σ(ω, h) =
∆̃(h)/π

(ω − σε̃d(h))2 + ∆̃2(h)
. (3.3)As ρ̃0

d,σ(0, h) is independent of the spin state we 
an drop the spin index σ for ω = 0. The�eld dependent spin sus
eptibility at T = 0 from equation (1.14) be
omes
χs(h) =

1

2
ρ̃0

d(0, h)[1 + Ũ(h)ρ̃0
d(0, h)], (3.4)whilst the 
harge sus
eptibilities reads

χc(h) =
1

2
ρ̃0

d(0, h)[1 − Ũ(h)ρ̃0
d(0, h)]. (3.5)The 
orresponding transverse spin sus
eptibility χt(h) [zero applied �eld limit in the trans-verse dire
tion, 
f. equation (1.26)℄ is given by

χt(h) =
m(h)

2h
. (3.6)For the symmetri
 model ε̃d(h) is entirely magneti
 �eld driven it is 
onvenient to write itas ε̃d(h) = η̃(h)h. Then 2hη̃(h) is the Zeeman splitting of the impurity levels for the non-intera
ting quasiparti
les, and η̃(h) 
an be given the interpretation of a �eld dependentenhan
ement fa
tor.Equation (3.4) for the sus
eptibility χs(h) has a term in Ũ(h). However, the sus
ep-tibility χs(h) = ∂m(h)

∂h 
an also be derived by di�erentiating the expression (3.2) for themagnetisation whi
h depends expli
itly only on the variables ε̃d(h) and ∆̃(h). Hen
e, the



44 Field dependent quasiparti
le dynami
s in the Anderson impurity modelvalue of Ũ(h) is not independent of the other two parameters and we 
an derive a relationbetween them,
1 + Ũ(h)ρ̃0

d(0, h) =
∂ε̃d(h)

∂h
− ε̃d(h)

∆̃(h)

∂∆̃(h)

∂h
. (3.7)The proof that equation (3.4) for the sus
eptibility is exa
t depends on a Ward identity,so the relation (3.7) we have derived must be an alternative statement of this identity. Interms of η̃(h) = ε̃d(h)/h it be
omes

1 + Ũ(h)ρ̃0
d(0, h) = η̃(h) + h

∂η̃(h)

∂h
− hη̃(h)

∆̃(h)

∂∆̃(h)

∂h
. (3.8)In the system with magneti
 �eld the expression of the Wilson ratio (1.16) in terms of therenormalised parameters reads

R(h) = 1 + Ũ(h)ρ̃0
d(0, h). (3.9)In �gure 3.1 we give a plot of the renormalised parameters as a fun
tion of the naturallogarithm of the magneti
 �eld, log(h/T ∗), for the strong 
oupling 
ase U/π∆ = 4.
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PSfrag repla
ementsFigure 3.1: Left: The magneti
 �eld dependen
e of the renormalised parameters ∆̃(h)/∆,
ε̃d(h)/ε̄d (= η̃(h)) and Ũ(h)/U , and the Wilson ratio R(h), for the symmetri
 Ander-son model with U/π∆ = 4.0 plotted on a logarithmi
 s
ale. Right: The magneti
 �elddependen
e of the renormalised parameters ∆̃(h)/∆̃, η̃(h) and Ũ(h)/Ũ , and the Wilsonratio R(h) for the same parameters plotted on a logarithmi
 s
ale and with logarithmi
allys
aled y-axis. In both 
ases the energy s
ale is set by T ∗ = π∆̃(0)/4 = TK.We give two di�erent versions of this dependen
e, one s
aled by the bare parameters(left), and one s
aled by the renormalised parameters at zero �eld (right), whi
h has alogarithmi
ally s
aled y-axis. We 
an follow the progressive de
rease of renormalisatione�e
ts on the quasiparti
les as the strong 
orrelation e�e
ts are suppressed when magneti
�eld is in
reased. This 
an be seen dire
tly from the ratio ∆̃(h)/∆ = z(h), whi
h after a



3.2 Field dependent renormalised parameters 45range with little variation in
reases steadily to one for large �elds. For zero �eld in theKondo regime z has a small value, but with in
reasing �eld the impurity spin is more andmore polarised, leading to a suppression of the spin �u
tuations and likewise the Kondoe�e
t. The quasiparti
les are therefore �de-renormalised� from the h = 0 values by themagneti
 �eld, and for very large �eld h > U essentially non-intera
ting behaviour (z = 1)is found. The trend 
an also be seen in the �eld dependent Wilson ratio R(h) in (3.9). Itis a 
ombination of all the renormalised parameters and shows a smooth transition from
R = 2 for h = 0 to R = 1 for large �eld. It is known from Bethe ansatz 
al
ulations(Tsvelik and Wiegmann 1983) that R(h) = 2 is independent of h in the Kondo model.This 
an be seen to be the 
ase in the results for R(h) shown in �gure 3.1 when theparameters 
orrespond to the lo
alised or Kondo regime. The lo
alised model, however,is only valid when the 
harge �u
tuations are 
ompletely suppressed. For very large �eldvalues h > U lo
al 
harge �u
tuations 
an be indu
ed by the magneti
 �eld and, as thisregime is approa
hed, R(h) makes a 
rossover to the value R = 1 for non-intera
tingele
trons.In the limit h → 0, the �eld dependent enhan
ement fa
tor for the magneti
 responseof quasiparti
les η̃(h) is equal to η̃(0) = R(0) due to (3.8) and (3.9). Therefore, in theKondo regime, R(0) = 2, the quasiparti
les have twi
e the non-intera
ting value for �elddependent splitting showing the enhan
ed sus
eptibility towards exposure to a magneti
�eld. For very large h, η̃(h) goes to one 
orresponding to a normal Zeeman splitting fornon-intera
ting parti
les. In the intermediate �eld regime, h ≃ T ∗, η̃(h) be
omes fairlylarge before going down to one. Coming from large �elds this 
an be understood frommean �eld theory, where we 
an write

η̃mf = εd,↓(h)
mf/h = [εd + U(nd/2 +m(h)) + h]/h = 1 + Um(h)/h, (3.10)where we have used parti
le hole symmetry. This term in
reases from one as h de
reases asthe magnetisation does not de
rease mu
h in this regime [see �gure 3.2 (left)℄. Coming fromzero �eld the behaviour 
an be understood from the Friedel sum rule for the magnetisation(3.2) whi
h gives

η̃(h) =
∆̃(h)

h
tan(πm(h)) (3.11)As 
an be seen for the behaviour of the magnetisation in �gure 3.2 (left) in this regimethere is a sharp rise a

ompanied by a moderate in
rease of ∆̃(h) whi
h leads to the strongin
rease in η̃(h).It is not so straight forward to understand the behaviour of the renormalised quasipar-ti
le intera
tion Ũ(h). At �rst sight it might seem surprising that in the intermediate �eldrange Ũ(h) is larger than the bare intera
tion of the model. This does not imply, however,that the intera
tion e�e
ts are be
oming stronger. The e�e
ts of the intera
tion on the lowenergy s
ale depend upon the 
ombination, Ũ(h)ρ̃0

d(0, h), and ρ̃0
d(0, h) falls o� rapidly with

h as ε̃d(h) moves away from the Fermi level. The 
ombination Ũ(h)ρ̃0
d(0, h) 
an be seen to
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Figure 3.2: Left: The impurity magnetisation m(h) for the symmetri
 model with U/π∆ =

3.0, together with R(h)/4, where R(h) is the Wilson ratio, plotted as a fun
tion of thelogarithm of the magneti
 �eld, ln(h/T ∗). Also shown for 
omparison are the 
orrespondingBethe ansatz results Tsvelik and Wiegmann (1983) for the �eld indu
ed magnetisation forthe Kondo model. Right: The ratio −ρ̃0
d(h)

′/ρ̃0
d(0), where the prime indi
ates a derivativewith respe
t to h/T ∗, is shown for U/π∆ = 0.0, 0.5, 3.0 as a fun
tion of h/T ∗. The dashedline shows the asymptoti
 result as h→ 0, 3hπ
√

3/2T 2
K, for the Kondo model.de
rease monotoni
ally with in
rease of h, as dis
ussed above for R(h). We 
an observethe enhan
ement of the e�e
tive intera
tion Ũ(h), as the magnetisation is redu
ed fromthe saturated value msat = 1/2 for large �eld. As the applied magneti
 �eld is redu
edfrom the regime h > U , spin �u
tuations in
rease and enhan
e the e�e
tive intera
tion Ũ ,as in the random phase approximation (RPA), above the bare value U ,

ŨRPA(h) =
U

1 − Uρd(0, h)
. (3.12)This result 
orresponds to the enhan
ement of the sus
eptibility that one �nds from theRPA. If the magneti
 �eld is redu
ed from a large value then Uρd(0, h) > 0 in
reases andso ŨRPA(h) in
reases. This is pre
isely what is seen in the large h regime in the resultsin �gure 3.1. As the magneti
 �eld is further redu
ed the many-body 
orrelations arein
reasingly e�e
tive in s
reening the impurity so that Ũ(h) de
reases from an enhan
edvalue greater than U to a value 4TK as h → 0 when U > 2π∆. The in
rease as seenwhen 
oming from the other side, i.e. from small magneti
 �elds, 
an be understoodas follows. The lo
alised model gives R(h) = 2 for all h, whi
h implies that Ũ(h) =

1/ρ̃0
d(0, h). From this result, and equations (3.3) and (3.2), the ratio Ũ(h)/π∆̃(h) for thelo
alised model 
an be expressed entirely in terms of the magnetisation and is su
h that

Ũ(h)/π∆̃(h) = 1/ cos2(πm(h)). For h = 0, this 
orresponds to the strong 
orrelationresults Ũ(0)/π∆̃(0) = 1, as m(0) = 0, and for very large �elds where m(h) → 1/2 as
h→ ∞, it gives Ũ(h)/π∆̃(h) → ∞, 
orresponding to the fa
t that 
harge �u
tuations 
anonly be 
ompletely suppressed if U is in�nite. For a more extensive dis
ussion we refer the



3.3 Low temperature response 47reader to the paper by Hewson, Bauer and Koller (2006).The magnetisation in terms of the renormalised parameters (3.2) 
an be 
ompared withexa
t results from Bethe ansatz 
al
ulations for the Kondo model (Tsvelik and Wiegmann1983) as shown in �gure 3.2 (left). It agrees with the the BA ansatz results over the �eldrange, where 
harge �u
tuations are not so important (Hewson, Bauer and Koller 2006),but starts to deviate for large h. Due to the 
harge �u
tuations, the approa
h to saturationis mu
h more rapid for the Anderson model than for the Kondo model, on
e h ex
eeds U .3.3 Low temperature responseWith the help of the �eld dependent parameters we 
an express the low order tempera-ture dependen
e for response quantities and study the behaviour of the 
oe�
ients withmagneti
 �eld. We will 
onsider the sus
eptibility and magnetisation �rst.Magnetisation and Sus
eptibilityUsing a thermodynami
 identity one �nds (Hewson, Bauer and Koller 2006)
χs(T, h) = χs(0, h) − cχ(h)

(

T

T ∗

)2

, (3.13)with
cχ(h) = −(πT ∗)2

12

∂2ρ̃0
d(0, h)

∂h2
. (3.14)On integrating these results with respe
t to h we 
an derive a similar relation for theindu
ed magnetisation,

m(T, h) = m(0, h) − cm(h)

(

T

T ∗

)2 (3.15)where
cm(h) = −(πT ∗)2

6

∂ρ̃0
d(0, h)

∂h
. (3.16)In �gure 3.2 (right) we plot the results for −ρ̃0

d(h)
′/ρ̃0

d(0), whi
h is proportional to cm(h),for U/π∆ = 3.0, 0.5, 0.0 in the range 0 < h/T ∗ < 2.5. It 
an be seen that all three 
urveshave a maximum whi
h implies that for a spe
i�
 magneti
 �eld hmp the 
oe�
ient cm(h)is maximal and therefore the magnetisation de
reases most signi�
antly with in
reasingtemperature in this regime. For the strong 
oupling regime we see in �gure 3.2 (right) that
hmp . 0.5T ∗ and that is the �eld region in �gure 3.2 (left), where the magnetisation hasthe steepest rise. Another 
onsequen
e of the fa
t that all three 
urves have a maximumis that cχ(h) in (3.14) be
omes zero, and 
hanges from positive to negative sign in thisrange. Hen
e, from this �eld hmp on the low temperature sus
eptibility in
reases with thetemperature. This o

urs for h signi�
antly smaller than T ∗ = TK in the Kondo regime.



48 Field dependent quasiparti
le dynami
s in the Anderson impurity modelLow Temperature Transport in an Arbitrary Magneti
 FieldIn order to determine the T 2-dependen
e of linear response transport 
oe�
ients we needto 
al
ulate the renormalised self-energy Σ̃σ(ω, T, h) both to order ω2 and to order T 2. We
al
ulate this from the renormalised perturbation expansion as explained in se
tion 2.2.2taken to order Ũ2(h). This takes full a

ount of the quasiparti
le s
attering and givesthe exa
t result of Yamada (1975a) for h = 0. Note that no 
ounter-terms have to be
onsidered for the T 2 and ω2 
oe�
ients. In order to dedu
e the ω2 term we 
onsider these
ond order diagram as given in �gure 2.4 with Ũ → Ũ(h),
Σr,(2)

σ (ω) =
Ũ(h)2

(2π)2

∫ ∫

dω1dω2G̃
0
σ(ω − ω1)G̃

0
−σ(ω1 + ω2)G̃

0
−σ(ω2), (3.17)where the free 
ausal Green's fun
tion for the symmetri
 model with magneti
 �eld for

T = 0 in terms of renormalised parameters has the form
[G̃0

σ(ω)]−1 = ω + σε̃d(h) + sgn(ω)i∆̃(h). (3.18)The 
orre
tions to order ω2 
an be dedu
ed from the se
ond derivative of the self-energywith respe
t to ω evaluated at ω = 0 and T = 0. Using
∂2G̃0

σ(ω)

∂ω2
= 2G̃0

σ(ω)3 − 2πiδ′(ω)ρ̃0
d(ω, h) −

8π2i

∆̃(h)
ρ̃0

d(ω, h)
2δ(ω)σε̃d(h) (3.19)we �nd after some algebra

Σ̃σ(ω, 0, h) = −c(h)ω2
[

i− (2 + α̃ω(h))σε̃d(h)/∆̃(h)
]

, (3.20)where
c(h) =

πŨ2(h)[ρ̃0
d(0, h)]

3

2
, α̃ω(h) =

2I(h)∆̃(h)

ξ̃(h)[ρ̃0
d(0, h)]

2
. (3.21)We have introdu
ed ξ̃(h) = πρ̃d(0, h)ε̃d(h) and I(h) is the integral

I(h) =

∞
∫

−∞

∞
∫

−∞

G̃0
↓(ω

′′)G̃0
↓(ω

′′ + ω′)[G̃0
↑(ω

′)]3
dω′′

2π

dω′

2π
, (3.22)whi
h 
an 
onveniently be evaluated numeri
ally.The 
orresponding result for the renormalised self-energy to order T 2 
an be derivedusing the Sommerfeld expansion. The 
al
ulation 
an be performed by using for ea
hinternal propagator G̃0

σ(ω) in the T = 0 diagrammati
 expansion an additional 
orre
tionterm (Hewson 1993a, 
hapter 5),
− (πT )2

3

δ′(ω)∆̃(h)

(ω + σε̃d(h))2 + ∆̃2(h)
. (3.23)



3.3 Low temperature response 49The result for the renormalised self-energy to order T 2 for ω = 0 is
Σ̃σ(T, 0, h) = −c(h)(πT )2

[

i+ (1 + α̃T (h))σε̃d(h)/∆̃(h)
]

, (3.24)where the parameter α̃T (h) is given by
α̃T (h) =

∆̃(h)

6ξ̃(h)ε̃d(h)

[

1 − ε̃d(h)

∆̃(h)
tan−1

(

ε̃d(h)

∆̃(h)

)

(

4 +
∆̃(h)

ξ̃(h)ε̃d(h)

)]

. (3.25)We 
an now apply these results to the 
al
ulation of transport 
oe�
ients.Appli
ation to magneti
 impuritiesThe 
ontribution to the 
ondu
tivity σ(T, h) from the s
attering of isolated impuritiesdes
ribed by an AIM is given by (Yamada 1975a)
σ(T, h) = σ0

∑

σ

∫ ∞

−∞

1

ρd,σ(ω, T, h)

(

−∂f(ω)

∂ω

)

dω, (3.26)where ρd(ω, T, h) = ∆̃(h)ρ̃d(ω, T, h)/∆, and ρ̃d(ω, T, h) is the spe
tral density of the quasi-parti
le Green fun
tion G̃d(ω, T, h) in
luding the renormalised self-energy. The Sommerfeldexpansion gives for (3.26) to se
ond order in T on using the renormalised self-energy to
al
ulate the quasiparti
le spe
tral density ρ̃d(ω, T, h) (Hewson, Bauer and Koller 2006),
σ(h, T ) = σ(h, 0)

{

1 + σ2(h)

(

πT

∆̃(h)

)2

+ O(T 4)
}

, (3.27)where σ(h, 0) = 2σ0/cos
2(πm(h)) and σ2(h) is given by
σ2(h) =

cos2πm(h)

3

[

1 + C(h)(R(h) − 1)2
]

. (3.28)The 
oe�
ient C(h) reads
C(h) = 2cos2(πm(h)) − sin2(πm(h)) [1 − 3α̃T (h) + α̃ω(h)] . (3.29)In �gure 3.3 (left) we show the se
ond order 
oe�
ient σ2(h) plotted over log(h/T ∗) for arange of parameters (U/π∆ = 0.5 − 4).For zero �eld the 
ondu
tivity due to impurity s
attering rises with temperature as is wellknown (Yamada 1975a). When h is in
reased, σ2(h) de
reases and tends to zero for veryhigh �elds, so that the low temperature 
ondu
tivity be
omes temperature independent.The impurity level is then shifted out of the range of the thermally ex
ited states in the
ondu
tion band so that there is negligible impurity s
attering. We note for the strong
oupling 
ases, where there is a lo
al moment (U/π∆ = 2, 4), that the 
oe�
ient σ2(h)
hanges sign for a 
ertain 
riti
al �eld hc, with hc ≃ 0.5T ∗. The mathemati
al reason forthis behaviour is dis
ussed in Hewson, Bauer and Koller (2006). Physi
ally, when 
oming
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Figure 3.3: Left: Field dependent 
oe�
ient σ2(h) from (3.28) for the se
ond order temper-ature expansion of the 
ondu
tivity. Right: Field dependent 
oe�
ient G2(h) for the se
-ond order temperature expansion of the 
ondu
tan
e (3.32). Weak 
oupling (U/π∆ = 0.5)up to strong 
oupling (U/π∆ = 4) is 
onsidered.from larger temperatures it is the spin �ip s
attering of the lo
al moment that 
auses theresistivity ρ(T ) = 1/σ(T ) to rise as the temperature is lowered, leading to a resistan
eminimum and the Kondo e�e
t. Perturbation theory shows that spin-�ip s
attering givesa diverging amplitude for T ≃ T ∗. The behaviour (
hara
teristi
 for zero �eld) is thenstarting from T = 0 a (quadrati
) in
rease in the 
ondu
tivity with rising temperature toa maximum (around T ∗) and from there on a de
rease, when other pro
esses like phonons
attering are taken into a

ount. Likewise the resistivity de
reases quadrati
ally from
T = 0 to the famous minimum and then in
reases again. The situation 
hanges for astrong �eld, sin
e for a mainly polarised impurity spin spin-�ip s
attering pro
esses arestrongly suppressed, and therefore a minimum in the resistivity ρ(T ) = 1/σ(T ) might noto

ur anymore. The 
hange in sign of the temperature dependen
e for a 
ertain magneti
�eld for the behaviour starting from T = 0 might therefore be 
onne
ted to the fa
t thatthe resistivity in the strong �eld dire
tly in
reases with temperature. As a 
onsequen
ewe would not observe a Kondo minimum anymore. To our knowledge, this e�e
t has notbeen seen experimentally, but for magneti
 impurities systems with a very low Kondotemperature it might be feasible to put the result to an experimental test.Appli
ation to quantum dotsIn the limit of linear response the equilibrium value of the one-ele
tron Green fun
tion
an be used to 
al
ulate the di�erential 
ondu
tan
e G = dI/dV through a quantum dot(Ferry and Goodni
k 1997),

G(T, h) =
G0∆

2

∑

σ

∫

dωπρd,σ(ω, T, h)

(

−∂nF(ω)

∂ω

)

, (3.30)



3.4 Beyond the Low Energy Regime 51where nF is the Fermi fun
tion and G0 = e2/π~ with Plan
k's 
onstant ~. In the lowtemperature regime we 
an again apply the Sommerfeld expansion to obtain the leadingorder �nite temperature 
orre
tions to order T 2 (Hewson, Bauer and Koller 2006),
G(T, h) = G(0, h)

(

1 −G2(h)

(

πT

∆̃(h)

)2
)

, G(0, h) = G0 cos2(πm(h)), (3.31)and
G2(h) =

cos2(πm(h))

3

{

cos2(πm(h))
[

1 + 2(R(h) − 1)2
]

− sin2(πm(h))
[

3 + (R(h) − 1)2(1 + 2αω(h) − 6αT (h))
]

}

.In �gure 3.3 (right) the �eld dependen
e of G2(h) is shown. Note that we have in
luded aminus sign before the T 2 term in (3.31), so that the similar behaviour in �gures 3.3 and3.3 (right) a
tually 
orresponds to opposite temperature dependen
e. This is due to theapproximate inverse relation between the two systems, if the hybridisation V = 0 for animpurity, there is no s
attering and hen
e in�nite 
ondu
tivity, whereas if V = 0 for thequantum dot there is no 
urrent and hen
e in�nite resistivity.The temperature dependen
e and its s
aling with TK for zero magneti
 �eld has beenobserved experimentally by Goldhaber-Gordon et al. (1998a). In �nite �eld there is a sign
hange in this leading temperature dependen
e at a values of the magneti
 �eld 0 < h < T ∗.A sign 
hange in the se
ond term in the Sommerfeld expansion of equation (3.30) o

urswhen ρd 
hanges from a lo
al maximum to a minimum (Hewson, Bauer and Koller 2006).Note that this e�e
t, in 
ontrast to the 
ase dis
ussed in the last se
tion, is not unique tothe Kondo regime and 
an also o

ur for weak 
oupling. A qualitative explanation of thissign 
hange is that the lo
al spe
tral density at the Fermi level is suppressed with in
reasingmagneti
 �eld. At higher �elds when the spe
tral density develops two peaks then there aremore thermally ex
ited states whi
h 
an 
ontribute to an in
rease of the 
ondu
tan
e. Thistemperature dependen
e 
ould be experimentally observable, sin
e estimates of the Kondotemperature are of the order 300mK 
orresponding to magneti
 �elds in the experimentalrange (Kogan et al. 2004). A di�
ulty might be that the overall response is redu
ed bythe cos2(πm(h)) fa
tor in equation (3.31).3.4 Beyond the Low Energy Regime3.4.1 NRG methodWe 
an use the extension of the NRG method to 
al
ulate the dynami
 response fun
-tions, as explained in se
tion 2.1.2, to look at the behaviour of the model in an arbi-trary magneti
 �eld on higher energy s
ales. In doing so it is important to use one ofthe density matrix extensions as the standard NRG approa
h gives results whi
h 
onsid-erably underestimate the shift of the high energy spe
tral weight with the variation of



52 Field dependent quasiparti
le dynami
s in the Anderson impurity modelmagneti
 �eld. We also use the approa
h, in whi
h the self-energy is dedu
ed from the
al
ulation of higher F -Green's fun
tions. It 
an be shown in detail that the magneti-sation obtained from integrating the density matrix improved spe
tra up to the Fermienergy agrees very well with results obtained from stati
 NRG expe
tation values or theexpression using renormalised parameters (3.2) in the weak and strong 
oupling regime(Hewson, Bauer and Koller 2006). In �gure 3.4 (left) we give results for the spin up partof the d-site spe
tral density ρd,↑(ω) = − 1
π ImGd,↑(ω

+) for a strong 
oupling situation(U/π∆ = 4) for various values of the magneti
 �eld h.
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Figure 3.4: Left: Strong 
oupling (U/π∆ = 4) spe
tral density of the d-site Green fun
tion
ρd,↑(ω) for various magneti
 �elds h. The energy s
ale is given by 4TK = π∆̃. Right:Quasiparti
le peak for the spe
tral density of the d-site Green fun
tion ρd,↑(ω). The energys
ale on the left side is set by half the bandwidth D = 1 and on the right ω-axis is s
aledwith TK.The shift of the spin-up Kondo resonan
e from the Fermi level with in
rease of magneti
�eld, whi
h is almost imper
eptible on the plot on the left hand side, is a

ompanied bylarge shifts of the spe
tral weight on the higher energy s
ales as the impurity is magneti
allypolarised. In �gure 3.4 (right), we fo
us on the e�e
t of the magneti
 �eld on the thequasiparti
le (Kondo) resonan
e. The shift of the resonan
e from the Fermi level (ω = 0)with in
reasing magneti
 �eld values is 
learly seen on this higher resolution energy s
aleused for this plot. As the peak shifts, its height de
reases and the resonan
e be
omesbroader. For even larger �elds than shown here the peak merges with the lower atomi
limit peak seen in �gure 3.4 (left). Note that the peak form is asymmetri
 with logarithmi
tails, similar to the results of Ros
h et al. (2003), obtained using the perturbative RG forthe Kondo model for large magneti
 �elds. However, some of the asymmetry in the resultsmust be attributed to the logarithmi
 broadening s
heme (2.12).If −εp(h) denotes the position of the quasiparti
le peak in the spe
tral density for aspin up ele
tron, then the 
orresponding value for non-intera
ting ele
trons (U = 0) is halfthe Zeeman splitting, ∆Z = 2h. An exa
t expression for εp(h)/h in the limit h → 0 has



3.4 Beyond the Low Energy Regime 53been derived by Logan and Di
kens (2001),
lim
h→0

εp(h)

h
=

R

1 + b∆z2
, (3.32)where R is the Wilson ration and b is the 
urvature of the imaginary part of the self-energyat ω = 0. The value of b 
an be 
al
ulated from the renormalised perturbation expansion(Hewson 2001) and the result (3.32) written as

lim
h→0

εp(h)

h
=

R

1 + (R − 1)2/2
. (3.33)This ratio, therefore, varies from one in the non-intera
ting 
ase (R = 1) to 4/3 in theKondo limit (R = 2). Note that this is a substantial redu
tion from the free quasiparti
levalues η̃(0) = 2. It is not straight forward to obtain a pre
ise estimate of b or the value of

εp(h) from the NRG spe
tra as they are sensitive to parameters of the logarithmi
 s
aleGaussian broadening (2.12) whi
h is used to obtain a 
ontinuous spe
trum on all energys
ales from the dis
rete results. However, if the broadening is modi�ed to Lorentzian peakswith 
onstant width for the very low energy s
ales the asymptoti
 results 
an be 
on�rmed.We have estimated the ratio εp(h)/h from the NRG spe
tra for higher magneti
 �eldvalues and �nd that it in
reases monotoni
ally with h and ex
eeds the value of 2 beforethe peak merges at high �eld values into the atomi
 limit peaks. There have been other esti-mates of the h-dependen
e of this ratio (Moore and Wen 2000, Costi 2000, Logan and Di
kens2001), but these di�er markedly a

ording to the method of 
al
ulation. On the basis ofa Bethe ansatz 
al
ulation of the spinon spe
trum for the Kondo model, Moore and Wen(2000) �nd that εp(h)/h < 2 in all 
ases and 
onje
ture that the value of 2 is the high�eld asymptoti
 limit. It is possible that this is a feature of the lo
alised model, when
harge �u
tuations are 
ompletely suppressed. There is some eviden
e in support of thisin our results in that, as we suppress the 
harge �u
tuations on in
reasing the value of Uthrough the values U/π∆ = 2, 3, 4, the ratio εp(h)/h in
reases less rapidly with in
reaseof h. The ratio only begins to ex
eed the value of 2 roughly at the point when 
harge�u
tuations set in and R(h) begins to di�er signi�
antly from the value of R(h) for thelo
alised model, R(h) = 2. Costi (2000) has also done NRG 
al
ulations for a lo
alisedmodel and �nds a ratio 
lose to but always less than 2. Using the lo
al moment approxi-mation Logan and Di
kens (2001) have also estimated the ratio εp(h)/h and �nd an evenmore marked in
rease in the ratio with in
rease of h to values su
h that εp(h)/h > 2.The s
aling of the ratio εp(h)/h with the Kondo temperature has also quantitatively beenstudied (Hewson, Bauer and Koller 2006).3.4.2 RPT methodAs seen in the last se
tion we 
ould give a

urate results for the spe
tral fun
tions with theNRG method. In this se
tion we would like to use the renormalised perturbation theory
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le dynami
s in the Anderson impurity modelto 
al
ulate dynami
 response fun
tions. The theory gives asymptoti
ally exa
t results forthe ω dependen
e for the self-energy, when we 
onsider a se
ond order expansion in Ũ .Here we would like to see to what frequen
ies we 
an extend the des
ription by 
al
ulatingthe relevant diagrams in the RPT expansion. The quality of the approximation 
an begauged with the NRG results. We will start by 
onsidering 
al
ulations for the dynami
spin sus
eptibilities, where it has been shown that the RPT 
an give very a

urate results(Hewson 2006).Dynami
 Sus
eptibilitiesWe 
al
ulate the RPT approximation for the dynami
 transverse spin sus
eptibility in aseries of repeated quasiparti
le s
attering as des
ribed in se
tion 2.2.3 and dis
ussed byHewson (2006). This is reminis
ent of an RPA approximation, the propagators, however,are expressed in terms of renormalised parameters. Here, we fo
us on the transverse spinsus
eptibility χt(ω, h), although the method is also appli
able for other sus
eptibilities(Hewson 2006). The diagrammati
 expression was given in �gure 2.7, and we want togeneralise these earlier results to the 
ase with a magneti
 �eld. Hen
e, we de�ne the �elddependent the pair propagator Πhσ
p−σ(ω, h) as in equation (2.61),

Πhσ
p−σ(ω, h) = −

∫

dω1

2πi
G̃0

σ(ω + ω1)G̃
0
−σ(ω1). (3.34)The analyti
 solution is

Πhσ
p−σ(ω, h) =























−sgn(ω)
(

1
iπ

1
ση̃h+i∆̃sgn(ω)

+ 1
2π∆̃

log
(

ση̃h+isgn(ω)∆̃

−ση̃h+isgn(ω)∆̃

))

for ω = 2η̃h

− sgn(ω)
iπ

[

log
“

ω−ση̃h+isgn(ω)∆̃

ση̃h+isgn(ω)∆̃

”

ω−2ση̃h −
log

“

ω−ση̃h+isgn(ω)∆̃

−σηh+isgn(ω)∆̃

”

ω−2ση̃h+2isgn(ω)∆̃

]

otherwise.Note that Πh−σ
pσ (ω, h) = Πhσ

p−σ(−ω, h) as 
an be easily seen, also that for ω = 0 we �nd
Πhσ

p−σ(0, h) =
tan−1

(

ε̃d,σ

∆

)

πε̃d,σ
, (3.35)where we use ε̃d,σ = ση̃h. The full series for χt(ω, h) is obtained as

χt(ω, h) =
1

2

Πhσ
p−σ(ω, h)

1 − Ũhσ
p−σ(h)Πhσ

p−σ(ω, h)
. (3.36)The e�e
tive, renormalised vertex Ũhσ

p−σ(h) 
an be determined as des
ribed in se
tion 2.2.3with the help of the exa
t stati
 result. In the 
ase with �nite �eld we have as in (3.6),
χt(0, h) =

m(h)

2h
=

1

2πh
tan−1(η̃h/∆̃(h)), (3.37)



3.4 Beyond the Low Energy Regime 55where we have used the expression for the magnetisation (3.2) in terms of the quasiparti
leparameters. This yields for the e�e
tive intera
tion
Ũhσ

p−σ(h) =
πh(η̃ − 1)

tan−1(η̃h/∆̃(h))
. (3.38)Note that there is no expli
it dependen
e on Ũ(h) in this 
ase. Sin
e, however, the �elddependent renormalised parameters are not independent as seen in equation (3.8), thedependen
e on Ũ(h) 
an enter expli
itly. In the limit h→ 0 we �nd with

lim
h→0

η̃(h) − 1 = Ũ ρ̃0
d(0, 0) (3.39)that

Ũhσ
p−σ(0) =

Ũ

1 + Ũ ρ̃0
d(0, 0)

, (3.40)as before in equation (2.62).In �gure 3.5 we show RPT results for the 
ase U/π∆ = 4 for the imaginary part of
χt(ω, h) (ph-RPT) in 
omparison with 
orresponding results from an NRG 
al
ulation.
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Figure 3.5: The imaginary part of the transverse sus
eptibility h = 0 (left) and h = TK(right). The renormalised perturbation theory results (ph-RPT) are in good agreementwith NRG results over the whole frequen
y range.We 
an see in the plots that for zero �eld (left) that the results agree remarkably wellover the full frequen
y range shown. Also in the 
ase of �nite �eld, h = TK, whi
h isshown on the right hand side the 
urves agree very well apart from the dis
repan
y in thepeak height. The NRG 
al
ulation for the sus
eptibility is based on the 
omplete Anders-S
hiller basis. One �nds that both the RPT result and the NRG results satis�es the sumrule relating the integral over Imχt(ω, h) to the magnetisation.In the arti
le by Hewson (2006) it is shown that the RPT results give an a

uratedes
ription of the spin and 
harge sus
eptibilities for zero and �nite arbitrary magneti
�eld values H, and for frequen
ies ω extending over a range signi�
antly larger than theKondo temperature TK.



56 Field dependent quasiparti
le dynami
s in the Anderson impurity modelApproximations for the renormalised self-energyWe would like to give a des
ription of the Kondo resonan
e in magneti
 �eld su
h as in�gure 3.4 (right) in terms of the RPT. A �rst approximation for the low energy spe
trumis given by free the quasiparti
le spe
trum ρ̃0
d(ω) as given in equation (1.13). As explainedin se
tion 2.2 
orre
tions 
an be in
luded via a renormalised self-energy Σ̃σ(ω). In orderto 
ompare the quality of the RPT approximation for Σ̃σ(ω) we would like to 
ompare itwith a di�erent result. If the original self-energy of the problem Σσ(ω, h) is known, Σ̃σ(ω)
an be expressed as

Σ̃σ(ω) = zσ(h)

(

Σσ(ω, h) − ΣR
σ (0, h) − ω

∂

∂ω
ΣR

σ (0, h)

)

. (3.41)In the following we will use results for Σσ(ω, h) dedu
ed from NRG 
al
ulation and equation(3.41) to 
ompare with RPT results.In �gure 3.6 (left) we show the full NRG spe
trum (dot-dashed line) for a strong
oupling 
ase U/π∆ = 4 for zero �eld. To see that the RPT approa
h is in prin
ipalvalid on all energy s
ales we have dressed the non-intera
ting quasiparti
les ρ̃0
d(ω) with arenormalised self-energy as given in (3.41) and added as �RPT� in �gure 3.6 (left).
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Figure 3.6: Left: Comparison of strong 
oupling spe
tra: Renormalised parameters (RP)and spe
trum (1.13), Renormalised perturbation theory with full renormalised self-energy(RPT) (3.41) and Numeri
al Renormalisation Group (NRG). Right: Comparison of thelow energy behaviour of the one-parti
le spe
tral density for parti
le hole symmetri
 
aseand U/π∆ = 4 
al
ulated in di�erent RPT approximations and the NRG result.We 
an see that full agreement with the NRG 
urve is found. Note that this is not justa trivial rewriting of the propagator, sin
e the renormalised parameters are not 
al
ulatedfrom the self-energy, but from the low lying ex
itations at the �xed point. We havealso in
luded the free quasiparti
le spe
trum ρ̃0
d(ω) (3.3) in terms of the renormalisedparameters (RP), whi
h is seen to des
ribe the very lowest energy behaviour, namely theKondo resonan
e.



3.4 Beyond the Low Energy Regime 57The simplest dynami
 
orre
tion to the free quasiparti
les from an RPT 
al
ulation
omes from the se
ond order (SO) diagram [see �g. 2.4 (right)℄,
Σr,(2)

σ (ω) = −Ũ2

∫

dω2

2πi
Πhσ

p−σ(ω2, h)G̃
0
σ(ω − ω2). (3.42)The pair propagator Πhσ

p−σ(ω, h) is given as in (3.34). As mentioned before this gives theasymptoti
ally exa
t ω2 behaviour for the imaginary part. The 
orresponding renormalisedself-energy is obtained by in
luding the 
ounter-terms, as well. As explained in se
tion2.2.2 to this order we only need to take into a

ount the trivial 
ounter-terms Σct
σ (ω) =

−[λ1,σ +λ2,σω]. In the �eld dependent 
ase we a
tually get a �nite 
ontribution to λ3 fromthe vertex diagrams as shown in �gure 2.6. This gives, however, no dynami
 
ontributionto the renormalised self-energy as λ3 = O(Ũ(h)2). The renormalised self-energy to se
ondorder is then given by
Σ̃(2)

σ (ω) = Σr,(2)
σ (ω) − [λ1,σ + λ2,σω], (3.43)where λ1,σ and λ2,σ are determined by equation (2.40). Finite order expansions to higherorder extend the frequen
y range where the renormalised self-energy gives an a

uratedes
ription. A di�erent way of extending the perturbative 
orre
tions is to in
lude a
ertain 
lass of diagrams. As illustrated in the last se
tion this gave a

urate RPT resultsfor the transverse spin sus
eptibility in terms of a repeated quasiparti
le s
attering series.As well known from the study of metals near a magneti
 transition and the analysis of theKondo problem, spin �u
tuations are the 
ru
ial pro
esses in this regime. Mathemati
ally,the simplest formulation for that is an RPA-like repeated s
attering series, where a typi
alterm for the self-energy is diagrammati
ally depi
ted in �gure 2.7. The renormalised self-energy 
orresponding to this pro
ess is given by (Bauer et al. 2007a)

Σr,ph
σ (ω) = Ũ2

1

∫

dω2

2πi
2χσ

t (ω − ω2, h)G̃
0
−σ(ω2), (3.44)with χσ

t (ω, h) as given in equation (3.36) with Ũhσ
p−σ repla
ed by Ũ1. It is not dire
tly
lear for this approa
h where an in�nite series of diagrams is 
onsidered what 
ounter-terms have to be in
luded. For the most straight forward expression for the renormalisedself-energy Σ̃ph

σ (ω) in this 
ase we only in
lude the trivial 
ounter-terms Σct
σ (ω). Therenormalised self-energy in this approximation of repeated parti
le-hole s
attering Σ̃ph

σ (ω)is then given by an equation like (3.43) and again the parameters λi,σ are determined bythe renormalisation 
onditions (2.40). Su
h a pro
edure is not rigorous, but it is adoptedhere as a �rst strategy to test this kind of ph-RPT approximation. A formally moresatisfa
tory s
heme for 
al
ulations with in�nite series of diagrams 
an be given in termsof a self-
onsistent theory derived from a Luttinger Ward fun
tional. This is des
ribed inappendix C.3 and remains for future resear
h to be investigated.We still have not spe
i�ed the e�e
tive intera
tion Ũ1. This 
an be done by 
al
ulatingthe full renormalised vertex and using the renormalisation 
ondition (2.41). We pro
eed



58 Field dependent quasiparti
le dynami
s in the Anderson impurity modelhere as outlined in se
tion 2.2.3, where it is argued that for this simple RPA like approx-imation the full vertex is just a sum of the terms shown in �gure 2.7. From this we �ndwith (3.35) and the 
ondition (2.41) that
Ũ1(h) =

Ũ(h)

1 + Ũ(h)
πε̃d,σ

tan−1(ε̃d,σ/∆̃σ(h))
. (3.45)This redu
es to the earlier result (2.64) in the limit h → 0. Note that this expression(3.45) is in general di�erent from expression (3.38) used for the dynami
 sus
eptibilities.The numeri
al 
omparison, however, shows that the 
orresponding values are very similar.Results for the dynami
sIn the following we 
ompare

• results derived from the renormalised self energy of the se
ond order diagram (SO-RPT), 
f. equation (3.43),
• results derived from the renormalised self energy and the repeated quasiparti
le s
at-tering (ph-RPT), 
f. equation (3.44),
• the renormalised self-energy dedu
ed from an NRG 
al
ulation and equation (3.41).We 
onsider the strong 
oupling 
ase U/π∆ = 4 �rst for zero magneti
 �eld, h = 0. In�gure 3.7 (left) we 
ompare the results for the real part of the renormalised self energy forthe 
al
ulations spe
i�ed above.
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Figure 3.7: Comparison of the dynami
s behaviour of the real part (left) and imaginarypart (right) of the renormalised self-energy 
al
ulated with se
ond order RPT (SO-RPT),repeated parti
le hole s
attering RPT (ph-RPT) and NRG.We �nd that that for small ω the two perturbative approximations agree, but start todeviate for ω > 2TK. The slope for the real part of the se
ond-order perturbation theory



3.4 Beyond the Low Energy Regime 59(SO-RPT) is larger than the repeated parti
le hole series (ph-RPT); the exa
t asymptoti
behaviour, (1 − z)ω, found by the NRG 
al
ulated ReΣ̃σ(ω) is not rea
hed by either.Similarly, we 
ompare the imaginary part of the renormalised self-energy as shown in�gure 3.7 (right). For small ω we �nd a good agreement for the SO-RPT self-energy theph-RPT self-energy and the one 
al
ulated from (3.41) and the NRG. However, as soon asthe Kondo s
ale is rea
hed the approa
hes give 
ontributions of quite di�erent magnitude,where the smallest one is found for the repeated s
attering diagrams.In the earlier �gure 3.6 on the right, we 
ompare the resulting low energy spe
trafor free quasiparti
les based purely on the renormalised parameters (RP), the two RPTapproximations and the dire
t NRG result. For small ω all results agree well. The freequasiparti
le spe
trum (RP) falls o� too rapidly as 
ompared with the NRG result. Bothof the two RPT approximations give 
orre
tions towards higher energies, but it remainsin
on
lusive whi
h of the two is the better approximation for larger ω. It is useful, therefore,to study the situation with a magneti
 symmetry breaking in whi
h ea
h 
omponent ofthe spe
tral density departs from the Fermi energy.Therefore, we turn our attention now, for the same strong 
oupling situation with
U/π∆ = 4, to the �nite �eld 
ase. For h/TK = 1 we 
an see the results for the spe
traldensity 
al
ulated with the di�erent RPT approximations in �gure 3.8 (left).
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Figure 3.8: Strong 
oupling spe
tra in 
omparison for h/TK = 1 (left) and for h/TK = 4(right).Unlike in the 
ase of zero �eld the results for the free quasiparti
le propagator (RP) is notat all in agreement with the NRG spe
trum. It does not in
lude any suppression of thepeak height typi
al for �nite magneti
 �eld. In 
ontrast, one 
an see that the se
ond orderperturbation theory (SO-RPT) gives a dynami
 
orre
tion in the right dire
tion, albeit toosmall, whereas the repeated pro
ess (ph-RPT) renders a dynami
 
orre
tion of the rightmagnitude. Di�eren
es in the peak height are visible, but they are rather small. We 
ansee that, whilst for the low energy �ank of the peak the agreement is very good, for the



60 Field dependent quasiparti
le dynami
s in the Anderson impurity modelhigh energy side the RPT results be
ome ina

urate. This, however, is expe
ted, sin
e forhigher energies other pro
esses, su
h as 
harge �u
tuations, will start to play an importantrole and need to be in
luded in the renormalised self-energy.In order to understand the dis
repan
y between the di�erent approximations in termsof the 
orresponding renormalised self-energy, we plot them in the 
ase h/TK = 1 in �gure3.9.
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Figure 3.9: Frequen
y dependen
e of the real part (left) and imaginary (right) of therenormalised self-energy for h/TK = 1.Generally, we �nd that whilst the SO-RPT self-energy assumes greater values for higherenergies, for small energies, ω < 2TK, there are larger 
ontributions from the ph-RPTseries, whi
h are also found in Σ̃σ(ω) as 
omputed from (3.41) with the NRG. This e�e
t isseen more pronoun
ed in the imaginary part in �gure 3.9 (right). These 
ontributions areimportant for the 
orre
tion of the position and width of the Kondo resonan
e in a �nite�eld starting with �eld dependent renormalised parameters. Sin
e we �nd good agreementbetween the ph-RPT and the NRG result we 
on
lude that up to these energies the 
hosenrepeated quasiparti
le series in
ludes the most important 
ontributions for energies up to
TK (Bauer et al. 2007a).It is interesting to see up to what magnitudes of �eld strength the RPT approximationagrees well with the NRG results. For a quite large �eld, h/TK = 4, we display results forthe spe
tral density in �gure 3.8 (right). One 
an see that the ph-RPT agrees quite wellwith the NRG result. Di�eren
es in the peak form of RPT and NRG 
an be attributed tobroadening e�e
ts. The interpretation of this behaviour 
an in a similar way be understoodas in the above 
ase for h/TK = 1. At higher �elds su
h good agreement is not a
hievedanymore, and the RPT des
ription is less satisfa
tory. At su
h �eld strengths, however,the Kondo resonan
e is already suppressed substantially.Our 
on
lusion from these 
onsiderations is, that for the low energy behaviour and nottoo large magneti
 �elds h . 4TK, the most important 
ontributions to the renormalised



3.4 Beyond the Low Energy Regime 61self-energy are in
luded in the repeated s
attering pro
esses shown in �gure 2.7. In thepresentation here we have deliberately fo
used on these pro
esses, although other series,su
h as the ones representing longitudinal spin �u
tuations or 
harge �u
tuations 
ould be
al
ulated in a similar way. Su
h 
al
ulations have been 
arried out and analysed, but itwas found that the e�e
t of in
luding these does not alter the results mu
h.Both the NRG as well as the RPT 
al
ulations 
an be extended to the non-symmetri
AIM with magneti
 �eld. The main di�eren
es for the 
ase of a magneti
 �eld in situa-tions without parti
le-hole symmetry is that the wavefun
tion renormalisation fa
tor zσ(h)depends on the spin index σ, and as a 
onsequen
e so does the e�e
tive resonan
e width
∆̃σ(h), so the equations given earlier for the parti
le-hole symmetri
 model have to begeneralised. The details for this are given in referen
e Bauer and Hewson (2007a).In summary, we have shown in this 
hapter that the methods of NRG and RPT 
anbe used for the des
ription of the AIM in a magneti
 �eld. We showed that the mag-netisation and the stati
 response fun
tions 
an be well des
ribed in terms of the �elddependent renormalised parameters. We have used these parameters to 
al
ulate the dy-nami
 transverse spin sus
eptibilities in the RPT formulae and we �nd ex
ellent resultswhen 
ompared with those obtained from a dire
t NRG 
al
ulation. It was also shown thata good approximation for the renormalised self-energy for frequen
ies up to the order ofthe Kondo temperature 
ould be dedu
ed by fo
using on the transverse spin �u
tuationspart in terms of renormalised quasiparti
les. The 
omparison of resulting spe
tral fun
tionfor one spin 
omponent in a �eld with NRG gave good agreement for magneti
 �elds h upto the order of a few TK.





Chapter 4The Anderson impurity model inmagneti
 �eld in non-equilibrium

If there is not 
omplete agreement betweenthe results of one's work and experiment,one should not allow oneself to be too dis-
ouraged, be
ause the dis
repan
y may wellbe due to minor features that are not prop-erly taken into a

ount and that will get
leared up with further development of thetheory. Paul A.M. Dira


In this 
hapter we extend the RPT 
al
ulation for the AIM in magneti
 �eld to the non-equilibrium 
ase. We �rst dis
uss the relevant experimental situation and re
ent results ofmeasurements of the �eld dependent di�erential 
ondu
tan
e through a quantum dot inthe Kondo regime. We analyse how well these results 
an be understood with theoreti
alestimates based on equilibrium theory. Then we introdu
e the non-equilibrium theoryfor the two-
hannel AIM and the 
orresponding RPT. We present asymptoti
ally exa
tresults in the low voltage regime and �nite �eld regime, and also results for the dynami
sat higher voltages. All 
al
ulations are based on the non-equilibrium RPT with �elddependent renormalised parameters.4.1 Transport through a quantum dotTunable mesos
opi
 systems, su
h as quantum dots, have a attra
ted mu
h attentionfrom experimentalists as well as theorists in re
ent years. One reason is that they haveproved to be extremely useful to study strong 
orrelation physi
s, su
h as the Kondoe�e
t (Kouwenhoven and Glazman 2001). This development was stimulated by the ex-traordinary progress in fabri
ating, probing and experimentally handling these nanos
alesystems, whi
h lead to many a

urate measurements of the Kondo behaviour in su
hstru
tures (Ralph and Buhrman 1994, Cronenwett et al. 1998, Goldhaber-Gordon et al.1998b, De Fran
es
hi et al. 2002, Kogan et al. 2004, Amasha et al. 2005). As shown byGoldhaber-Gordon et al. (1998a) the equilibrium Kondo e�e
t in quantum dots, su
h asthe s
aling of the temperature dependen
e of the zero bias di�erential 
ondu
tan
e withthe Kondo temperature TK 
an be understood quantitatively with the theoreti
al methodsat hand (Hewson 1993a, Costi et al. 1994). In the last 
hapter we studied in detail thebehaviour of quantum dot like system in a magneti
 �eld. Experimentally, this behaviour



64 The Anderson impurity model in magneti
 �eld in non-equilibriumis investigated by measurements of the �nite bias di�erential 
ondu
tan
e, whi
h reallyrepresent a non-equilibrium situation. To understand the experimental results properly itis therefore ne
essary to establish a full theoreti
al understanding of the out of equilibriumKondo physi
s. We have to distinguish two types of non-equilibrium behaviour here: (a)relaxation from an out of equilibrium state, su
h as studied in time-dependent redu
eddensity matrix NRG approa
h (Anders and S
hiller 2005) and (b) the voltage V indu
edsteady state 
urrent transport situation. Here we will fo
us on the latter 
ase. First wewill study how well measurements on quantum dots in a magneti
 �eld 
an be des
ribedby equilibrium quantities as 
al
ulated in the last 
hapter.A general expression for the 
urrent through a quantum dot derived in non-equilibriumtheory (Hersh�eld et al. 1991, Meir and Wingreen 1992) reads
I =

G0

2e

∑

σ

∞
∫

−∞

dω [fL(ω) − fR(ω)]
4ΓLΓR

ΓL + ΓR
[−ImGret

dσ (ω, eVds)], (4.1)where Gret
dσ (ω, eVds) is the steady state retarded Green's fun
tion on the dot site, and fL(ω),

fR(ω) are Fermi distribution fun
tions for the ele
trons in the left and right reservoirs,respe
tively, fα(ω) = nF(ω−µα), nF(ω) = [1+eβω]−1. Usually the 
hemi
al potentials aregiven by µL = µd + eV/2 and µR = µd − eV/2, where Vds = V is the sour
e drain voltageand µd is the 
hemi
al potential on the quantum dot. ΓL and ΓR des
ribe the 
ouplingto the left and right lead, respe
tively, and G0 = e2/π~ is the quantum 
ondu
tan
elimit in mesos
opi
 transport with Plan
k's 
onstant ~. All these quantities relate tothe formulation of the two 
hannel Anderson model, whi
h is depi
ted in �gure 4.3. Forsymmetri
 
oupling to the leads we have ΓL = ΓR = ∆/2.Equation (4.1) is a generalisation of the earlier expression (3.30) for the linear responsedi�erential 
ondu
tan
e G = dI/dV . The di�erential 
ondu
tan
e is the quantity whi
h
an be a

essed experimentally and therefore (4.1) provides the 
onne
tion between thetheoreti
ally obtained Green's fun
tion Gret
dσ (ω, eV ) and the measured 
urrent through aquantum dot.Quantum dot experiments (Kogan et al. 2004, Amasha et al. 2005) in the presen
e ofa magneti
 �eld have been performed in non-equilibrium situations with a �nite sour
e-drain voltage V . In the last 
hapter we had seen that in a magneti
 �eld the Kondoresonan
e is shifted from the position at the Fermi level. Therefore, for �eld strengthslarger than a 
riti
al value hc two peaks 
an be observed in the di�erential 
ondu
tan
eas a fun
tion of the voltage V . There have been several interpretations (Moore and Wen2000, Logan and Di
kens 2001) of these results based on the approximation of using theequilibrium Green's fun
tion to evaluate Gret

dσ (ω, eV ) in (4.1). With this approximationat T = 0 we get an expression for the di�erential 
ondu
tan
e G(V ) as a fun
tion of thevoltage V ,
G(V ) =

dI

dV
=
G0π∆

2
ρd(eV/2). (4.2)



4.1 Transport through a quantum dot 65In this approximation G(V ) is dire
tly proportional to the total equilibrium spe
tral density
ρd = ρd,↑ + ρd,↓ evaluated at ω = eV/2, whi
h is shown in �gure 4.1 for the parametersused earlier (U/π∆ = 4) and a range of magneti
 �elds. The peak splits above a 
riti
al�eld, hc & 0.5TK, whi
h in agreement with results for the Kondo model (Costi 2000). A
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Figure 4.1: Left: Total spe
tral density of the d-site ρd(ω) for various �elds h. One 
an seethat the peak splitting be
omes visible only for �elds h & 0.5TK. Right: We 
ompare thepeak position in the di�erential 
ondu
tivity Vp, as dedu
ed from equation (4.2) and theNRG results for ρd(ω), with Vp,exp = ∆K dedu
ed from experiment Kogan et al. (2004).The Kondo temperature is inferred from the 
riti
al �eld for the peak splitting to beobserved, B(exp)

c ≈ 2T and the strong 
oupling result hc ≈ 0.584TK, whi
h is derived laterin this 
hapter.maximum of the di�erential 
ondu
tan
e, o

urs when one of the quasiparti
le peaks inthe spe
tral density is 
oin
ident with the left Fermi level at µd + eVds/2 and at the sametime the other peak 
oin
ides with the right Fermi level, µd − eVds/2. This is illustrateds
hemati
ally in �gure 4.2.It is important to be 
areful when quantifying the magnitude of the splitting of the Kondoresonan
e for �elds larger than the 
riti
al �eld, h > hc. In the interpretation of theexperimental results of dI/dVds the splitting of the Kondo resonan
e ∆
(exp)
Kondo was identi�edwith the voltage splitting seen in the di�erential 
ondu
tan
e e(V +

ds − V −
ds ) = ∆

(exp),V
Kondo(Kogan et al. 2004, Amasha et al. 2005). We had denoted the peak position of one spin
omponent of the Kondo resonan
e in the spe
tral density by εp(h) in the last 
hapter. Thesplitting between the up and down peaks in the total spe
trum is ∆

(theo),ω
Kondo = 2εp(h)fc(h),where fc(h) is a 
orre
tion fa
tor due to the overlap of the resonan
es (Hewson et al. 2005).It is 
ommon to 
ompare the Kondo splitting with the Zeeman splitting ∆Z = 2h. It shouldbe noted that results based on equation (4.2) in
lude the 
hange in the 
hemi
al potentialon the dot µd with the applied voltage V ,1 and the Kondo resonan
e, being a many-body1It is assumed that µd always is at the average position of µL and µR, whi
h for ΓL = ΓR is mostreasonable.
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µd + eVds/2

µd − eVds/2µd

(a) (b)Figure 4.2: A s
hemati
 plot of the spe
trum on the dot and 
hemi
al potentials forleft/right lead (µd ± eV/2) and dot (µd) for (a) zero bias and zero magneti
 �eld and (b)�nite voltage and �nite �eld.
resonan
e is tied to this 
hemi
al potential (Hewson et al. 2005), as illustrated in �gures4.2. Therefore, as seen in equation (4.2) voltage and frequen
y arguments, eV and ω,respe
tively, are related by a fa
tor of two, hen
e ∆

(exp),V
Kondo = 2∆

(exp),ω
Kondo for Kondo splitting inthe spe
tral density. Therefore, if experimentally a splitting in the di�erential 
ondu
tan
eis identi�ed as larger than twi
e the Zeeman splitting, ∆

(exp),V
Kondo > 2∆Z, based on (4.2) itimplies that the 
orresponding Kondo splitting in the spe
tral density is merely largerthan the Zeeman splitting, ∆

(exp),ω
Kondo > ∆Z, di�ering by a fa
tor of 2 from the 
on
lusion inreferen
e Kogan et al. (2004).To test whether the experimental results 
an be explained on the basis of equation (4.2),we have extra
ted the voltage peak position Vp whi
h 
orresponds to half the magnitude ofthe peak splitting for U/π∆ = 2, 4 and a range of �elds. The 
omparison with experimentalresults (Kogan et al. 2004) is displayed in �gure 4.1 (right). We 
an see there that, whilstthere is an agreement in the range h/TK ≃ 0.5− 1, in general there does not appear to bea satisfa
tory quantitative explanation of the experimental results based on approximatingthe non-equilibrium Green's fun
tion by the equilibrium one as the splitting of the Kondoresonan
e is overestimated like this. We 
on
lude that an agreement of experimental andtheoreti
al results rests on an a

urate des
ription of the steady state situation out ofequilibrium. In fa
t, one must stress that sour
e drain voltage sweeps for the di�erential
ondu
tan
e in quantum dot systems do not give dire
t information about the equilibriumdensity of states as sometimes assumed. We will therefore in the remainder of this 
hapterextend our analysis to the non-equilibrium transport situation and start by giving theformal setup for the two 
hannel AIM.



4.2 Formal setup for the non-equilibrium theory 674.2 Formal setup for the non-equilibrium theory4.2.1 The two 
hannel Anderson model and Keldysh formalismIn this se
tion we 
onsider a transport situation through a lo
al intera
ting system, like aquantum dot (QD). The Hamiltonian has the general form 
orresponding to the sket
h in�gure 4.3,
H = HL +HTL +HD +HTR +HR. (4.3)

Hα (α = L,R) des
ribes the left and right lead, respe
tively,
Hα =

∑

k,σ

εkαc
†
k,σ,αck,σ,α = −

∑

i,j,σ

tαijc
†
i,σcj,σ. (4.4)We assume i, j < 0 for the operators in the left lead α = L and i, j > 0 for α = R.

εkα = εk + µα in
ludes the left and right 
hemi
al potential and gives the dispersion forthe tight-binding 
hain form in (4.4).PSfrag repla
ements
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Figure 4.3: A s
hemati
 pi
ture of the two 
hannel Anderson model.
HTα is the tunnelling term between lead α and the dot. We 
an 
olle
t the left and right
ontribution to a mixing term of the form

Hmix = −
∑

σ

VL(c†d,σc−1,σ + h.c.) −
∑

σ

VR(c†1,σcd,σ + h.c.). (4.5)
HD des
ribes the isolated lo
al system, whi
h will in our 
ase be an intera
ting Andersons-level impurity,

HD =
∑

σ

εd,σc
†
d,σcd,σ + Uc†d,↑cd,↑c

†
d,↓cd,↓ ≡ HD,0 +HD,U . (4.6)We have allowed for a lo
al magneti
 �eld h = gµBH/2. To 
onsider the transport problemwe employ the Keldysh formalism (Keldysh 1965, Rammer and Smith 1986) and follow theformulation of Caroli et al. (1971). Thus, H1 = HL+HR+HD,0 is the equilibrium startingpoint and the term H2(t) = e−δ|t|(Hmix + HD,U) is adiabati
ally swit
hed on. The mainaim is to 
al
ulate the on-site retarded non-equilibrium Green's fun
tion Gret

dσ (ω, eV ), whi
h
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 �eld in non-equilibriumdetermines the 
urrent through the intera
ting quantum dot as seen in equation (4.1). This
an be done by a perturbation theory, whi
h is set up in analogy to the equilibrium 
ase.In order to avoid the unknown ground state at t = ∞, one has to work with additionalGreen's fun
tion on the Keldysh 
ontour CK as depi
ted in �gure 4.4 . This is 
onvenientlydone by introdu
ing 2 × 2 matri
es in Keldysh spa
e (Keldysh 1965, Rammer and Smith1986, Zagoskin 1998, Oguri 2006).PSfrag repla
ements
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CKFigure 4.4: Keldysh ContourThe non-intera
ting two-
hannel problem 
an be dealt with expli
itly. We assume wide
ondu
tion bands and the mixing of quantum dot with the leads is des
ribed by the hy-bridisation 
onstants Γα(ω) = −V 2
α Imgret

α (ω) ≡ Γα (Oguri 2006). Here, the retarded leftand right lead Green's fun
tions are gret
−1−1(ω) = gret

L (ω) and gret
11 (ω) = gret

R (ω). One �ndsthe lo
al unperturbed Green's fun
tion
G

(0)
d,σ(ω) =

(

G
(0),−−
d,σ (ω) G

(0),−+
d,σ (ω)

G
(0),+−
d,σ (ω) G

(0),++
d,σ (ω)

)

, (4.7)where the −/+ index 
orresponds to the �rst/se
ond part of the Keldysh 
ontour CK,respe
tively. The matrix elements, whi
h in
lude the voltage dependen
e expli
itly, aregiven by
G

(0),−−
d,σ (ω) =

ω − εd,σ − i∆(1 − 2feff(ω))

(ω − εd,σ)2 + ∆2
, (4.8)

G
(0),−+
d,σ (ω) =

2i∆feff(ω)

(ω − εd,σ)2 + ∆2
, (4.9)

G
(0),+−
d,σ (ω) =

−2i∆(1 − feff(ω))

(ω − εd,σ)2 + ∆2
, (4.10)and G

(0),++
d,σ (ω) = −G(0),−−

d,σ (ω)∗. We have de�ned ∆ = ΓL + ΓR and introdu
ed thefun
tion
feff(ω) =

ΓLfL(ω) + ΓRfR(ω)

ΓL + ΓR
. (4.11)We will assume in the following µd = 0 su
h that µL = eV/2 and µR = −eV/2. Theemphasis for the 
al
ulation in this 
hapter is laid on zero temperature, su
h that nF(ω) =

1 − θ(ω).In the intera
ting theory the full Green's fun
tion is given by the Dyson matrix equation
Gd,σ(ω)−1 = G

(0)
d,σ(ω)−1 − Σd,σ(ω). (4.12)The 
omponents of this self-energy Σd,σ(ω) 
an be determined in perturbation theory,whi
h is 
onveniently des
ribed in the path integral formalism (Oguri 2005, 2006). Thus



4.2 Formal setup for the non-equilibrium theory 69the Anderson model for transport through a quantum dot in the Keldysh formalism is
hara
terised by the e�e
tive a
tion S = S0 + SU with
S0 =

∑

σ

∞
∫

−∞

dt

∞
∫

−∞

dt′ dσ(t)G
(0)
d,σ(t− t′)−1dσ(t′) (4.13)where dσ(t) := t(dσ,−(t), dσ,+(t)) and

G
(0)
d,σ(t− t′)−1 =

1

2π

∫

dω G
(0)
d,σ(ω)−1e−iω(t−t′).

G
(0)
d,σ(ω) is given in (4.7). The intera
tion term reads

SU = −U
∞
∫

−∞

dt (nd,↑,−(t)nd,↓,−(t) − nd,↑,+(t)nd,↓,+(t)). (4.14)The partition fun
tion of the model is given by
Z =

∫

D(dσ,dσ)eiS[dσ,dσ ]. (4.15)Comparing this with the results in se
tion 2.2.1, we 
an see that the theory has the samestru
ture as in equilibrium with the only di�eren
e that we have to take into a

ount theadditional degrees of freedom in matrix form.Non-equilibrium renormalised perturbation theoryWe also have to generalise the setup of the renormalised perturbation theory from 
hapter2 to the non-equilibrium 
ase. The details for this are given in appendix C.4. The renor-malised parameters are de�ned for zero temperature and in the equilibrium limit, eV → 0,and we 
an therefore for their de�nition fo
us on the equilibrium retarded self-energy
Σret

σ (ω). In the Keldysh formalism it is generally given by
Σret

σ (ω) = Σ−−
σ (ω) + Σ−+

σ (ω). (4.16)As seen in 
hapters 2 and 3 for the equilibrium RPT it is useful to in
lude the magneti
�eld dependen
e in the self-energy, and then the de�nition of the parameters essentially
oin
ide with (2.33) and (2.34) with Σσ(ω) → Σret
σ (ω) . The renormalised intera
tion Ũ(h)is de�ned as before by the e�e
tive quasiparti
le intera
tion of the problem, whi
h is givenby the full renormalised four point vertex fun
tion at zero frequen
y (2.37). Note that therenormalisation 
onditions (2.40) and (2.41) only have to be satis�ed in the equilibriumlimit. The matrix for the non-intera
ting Green's fun
tion in terms of the renormalisedparameters is

G̃
(0)
d,σ(ω) =

(

G̃
(0),−−
d,σ (ω) G̃

(0),−+
d,σ (ω)

G̃
(0),+−
d,σ (ω) G̃

(0),++
d,σ (ω)

)

, (4.17)



70 The Anderson impurity model in magneti
 �eld in non-equilibriumwhere the matrix elements are given by [
f. (4.8)-(4.10)℄
G̃

(0),−−
d,σ (ω) =

ω − ε̃d,σ − i∆̃σ(1 − 2feff(ω))

(ω − ε̃d,σ)2 + ∆̃2
σ

, (4.18)
G

(0),−+
d,σ (ω) =

2i∆̃σfeff(ω)

(ω − ε̃d,σ)2 + ∆̃2
σ

, (4.19)
G

(0),+−
d,σ (ω) =

−2i∆̃σ(1 − feff(ω))

(ω − ε̃d,σ)2 + ∆̃2
σ

, (4.20)and G̃(0),++
d,σ (ω) = −G̃(0),−−

d,σ (ω)∗. The renormalised perturbation theory 
an be set up inthe one-parti
le irredu
ible s
heme as des
ribed in se
tion 2.2.2 and we only have to respe
tthe matrix stru
ture (see appendix C.4). We will be mainly interested in 
al
ulating theretarded renormalised self-energy (4.16). Therefore, we 
an fo
us on the 
ombinations
λret

i ≡ λ−−
i + λ−+

i for the 
ounter-terms, and in the simplest 
ase determine the valuedire
tly by the renormalisation 
ondition (2.40), su
h that
λret

1 = Σr,−−
σ (0) + Σr,−+

σ (0) (4.21)and
λret

2 =
∂

∂ω
(Σr,−−

σ (ω) + Σr,−+
σ (ω))

∣

∣

ω=0
. (4.22)

Σr,αβ
σ is the self-energy 
al
ulated perturbatively, and in the above equations we take thelimit eV → 0. The voltage dependent renormalised retarded self-energy is then given by

Σ̃ret
σ (ω, eV ) = Σr,−−

σ (ω, eV ) + Σr,−+
σ (ω, eV ) − λret

2 ω − λret
1 . (4.23)We will give an example for the diagrammati
 expansion for the se
ond order diagrams for

T = 0. The diagrams are of the same form as the one sket
hed in �gure 2.4 (right), however,the verti
es 
an enter with di�erent sign ± depending on whi
h part of the 
ontour they
orresponds to. The 
onvention here for the Feynman rules is a �+�-sign for the vertex onthe lower 
ontour (−) and a �−�-sign for the vertex on the upper 
ontour (+). The earlierintrodu
ed pair propagator (2.61) be
omes a matrix in Keldysh spa
e Π
hσ
p−σ,

Π
hσ
p−σ =

(

Π
hσ,(−−)
p−σ Π

hσ,(−+)
p−σ

Π
hσ,(+−)
p−σ Π

hσ,(++)
p−σ

)

, (4.24)whose matrix elements are given by
Π

hσ,(−−)
p−σ (ω) = i

∫

dω1

2π
G̃

(0),−−
d,σ (ω + ω1)G̃

(0),−−
d,−σ (ω1), (4.25)

Π
hσ,(−+)
p−σ (ω) = i

∫

dω1

2π
G̃

(0),−+
d,σ (ω + ω1)G̃

(0),+−
d,−σ (ω1), (4.26)

Π
hσ,(+−)
p−σ (ω) = i

∫

dω1

2π
G̃

(0),+−
d,σ (ω + ω1)G̃

(0),−+
d,−σ (ω1) (4.27)
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hσ,(++)
p−σ (ω) = −[Π

hσ,(−−)
p−σ (ω)]∗. All four pair propagators 
an be 
al
ulated analyt-i
ally for �nite voltage and magneti
 �eld. The resulting expressions are, however, longand not very instru
tive. The negative spin expressions for the Green's fun
tions yield

Πh−σ,(−−)
pσ (ω, h) = Π

hσ,(−−)
p−σ (−ω, h) (4.28)and Π

h−σ,(−+)
pσ (ω, h) = Π

hσ,(+−)
p−σ (−ω, h). The matrix elements of the se
ond order self-energy read (α, β = ±)

Σr(2)αβ
σ (ω) = −(αβ)

Ũ2

2πi

∫

dω2 Π
hσ,(αβ)
p−σ (ω − ω2)G̃

(0)αβ
d,−σ (ω2). (4.29)For the symmetri
 AIM and symmetri
 
oupling to the dot ΓL = ΓR = ∆/2 , and we have

feff(ω) = [f(ω− eV/2) + f(ω+ eV/2)]/2, whi
h is symmetri
 for V → −V . Sin
e the onlydependen
e in the free Green's fun
tions 
omes from this fa
tor, the self-energies satisfy
Σr(2)αβ

σ (ω,−eV ) = Σr(2)αβ
σ (ω, eV ). (4.30)By examining the spe
i�
 expressions for the Green's fun
tion (4.18)-(4.20) we also �ndfor the retarded renormalised self-energy (4.16) in the se
ond order expansion that

Σ̃
(2)ret
−σ (ω) = −Σ̃(2)ret

σ (−ω)∗. (4.31)Hen
e, to se
ond order it is enough to 
al
ulate, say, the spin up retarded Green's fun
tionand the other one 
an be inferred from (4.31).4.2.2 Low voltage asymptoti
s for the self-energyAsymptoti
ally exa
t results for the small voltage dependen
e of the self-energy have beenderived by Oguri (2001, 2005). His arguments are based on Ward identities and relate thederivative of the self-energy to the equilibrium vertex fun
tion. The 
onsiderations 
anbe viewed as an extension of the exa
t results by Yamada (1975b) for the ω dependen
e.These exa
t results are reprodu
ed by a se
ond order renormalised perturbation expansionin Ũ in the Keldysh formalism (Oguri 2005) whi
h yields
Σ̃(ω, Vds) = −ic

[

ω2 +
3

4
(eVds)

2

]

, with c =
1

2∆̃

(

Ũ

π∆̃

)2

. (4.32)When a magneti
 �eld is in
luded this result 
an be generalised in the renormalised per-turbation theory framework (Hewson et al. 2005). Starting point is equation (4.29) for these
ond order self-energy diagram. The retarded self-energy is given by the 
ombination inequation (4.16). Σ−+ is purely imaginary, and therefore for the real part 
ontribution weonly have to 
onsider Σ−− as given in (4.29). For T = 0 we 
an expand
feff =

1

2
(fL(ω) + fR(ω)) = 1 − θ(ω) − (eV )2

8
δ′(ω). (4.33)



72 The Anderson impurity model in magneti
 �eld in non-equilibriumThe Green's fun
tion G̃(0),−−
d,σ 
an thus be expressed as

G
(0),−−
d,σ (ω) =

ω − ε̃d,σ − i∆̃(2θ(ω) − 1)

(ω − ε̃d,σ)2 + ∆̃2
− i∆̃δ′(ω)(eV )2/4

(ω − ε̃d,σ)2 + ∆̃2
, (4.34)where the �rst term is identi
al to the equilibrium T = 0 
ausal Green's fun
tion. Thismeans that the (eV )2-term is found by three terms where in ea
h of them one Green'sfun
tion is repla
ed by the se
ond term in (4.34) and the other two are equilibrium Green'sfun
tions. Comparing this with equation (3.23) we see that this expansion is apart fromthe prefa
tor 
ompletely analogous to the low order temperature expansion in the last
hapter. We �nd that the renormalised self-energy for �nite �eld h to order ω2 and V 2

ds
an be expressed in the form,
Σ̃σ(ω, Vds) = −c(h)

[

i

(

ω2 + 3

(

eVds

2

)2
)

+
ε̃d,σ(h)

∆̃(h)

(

αω(h)ω2 + αV (h)

(

eVds

2

)2
)]

,(4.35)where
c(h) =

πŨ2(h)[ρ̃0
d(0, h)]

3

2
. (4.36)The quasiparti
le density of states ρ̃0

d,σ(ω, h) is given in equation (3.3). The 
oe�
ient
αω(h) for the expansion of the real part of Σ̃σ(ω, Vds) is given as in equation (3.21). Theresult for α̃V (h) is
αV (h) = 3 +

∆̃(h)

2ρ̃0
d(0, h)πε̃d,σ(h)2

[

1 − ε̃d,σ(h)

∆̃(h)
tan−1

(

ε̃d,σ(h)

∆̃(h)

)

(

4 +
∆̃(h)

ρ̃0
d(0, h)πε̃d,σ(h)2

)

]

.(4.37)In the limit h → 0 equation (4.35) redu
es to (4.32). For a 
ertain magneti
 �eld hthe 
oe�
ient αV (h) 
hanges sign and thus the asymptoti
s of the real part of the voltagedependen
e. In a generi
 strong 
oupling situation U/π∆ = 4 this happens for hc ≃ 0.46TK.Also in the large voltage limit asymptoti
 exa
t results 
an be derived (Oguri 2002).4.3 Di�erential 
ondu
tan
e for low voltageIn this se
tion we will employ the asymptoti
ally exa
t results for small voltage to study thebehaviour of the di�erential 
ondu
tan
e. Starting from (4.1), for parti
le hole symmetrywe 
an express the di�erential 
ondu
tan
e for zero temperature as
dI

dV
=
G0∆

2

∑

σ

(

− ImGret
dσ (eV/2, eV )

)

+
G0∆

e

∑

σ

eV/2
∫

0

dω

[

−Im
∂Gret

d,σ(ω, eV )

∂eV

]

. (4.38)If the voltage dependen
e of Gret
dσ (ω, eV ) was not important, the di�erential 
ondu
tan
ewould be given dire
tly by the �rst term in (4.38) without the voltage dependen
e in



4.3 Di�erential 
ondu
tan
e for low voltage 73the se
ond argument. This was dis
ussed in equation (4.2), and as a 
onsequen
e thedi�erential 
ondu
tan
e is identi�ed with the spe
tral density on the quantum dot. Ingeneral, the voltage dependen
e 
an not be negle
ted, and for the 
orre
t non-equilibriumdes
ription for the di�erential 
ondu
tion in equation (4.38), we need to 
al
ulate thevoltage dependen
e of the lo
al Green's fun
tion, whi
h is in
orporated in the renormalisedself-energy as shown in the last se
tion.4.3.1 E�e
t of the voltage on the di�erential 
ondu
tan
e for small �eldIn this se
tion we fo
us on the situation with a small magneti
 �eld. Then we 
an usethe asymptoti
 result for the renormalised self-energy (4.35) to 
al
ulate the di�erential
ondu
tan
e in equation (4.38). To 
larify the e�e
t of the �nite voltage we 
onsiderdi�erent approximations. The simplest situation is to ignore the renormalised self-energyterm 
ompletely, but use the renormalised parameters. The di�erential 
ondu
tan
e at
T = 0 then takes the simple form,

dI

dV
=
G0

2

∑

σ

∆̃2

(eV/2 − ε̃d,σ)2 + ∆̃2
. (4.39)We refer to this as (a) in the following. As (b) we refer to the 
ase where the ω2 term inthe renormalised self-energy in (4.35) is in
luded for the 
al
ulation of dI/dV . For small

ω this 
orresponds to (4.2), where the equilibrium spe
tral density is used, and no non-equilibrium voltage dependen
e is in
luded. By (
) we denote the full �rst term in equation(4.38) with the voltage dependen
e in the se
ond argument of the Green's fun
tion whi
h
omes from the self-energy in (4.35), but negle
ting the se
ond term in (4.38). (d) takesinto a

ount the full expression (4.38) with the self-energy asymptoti
s (4.35).We would like to analyse these expressions for a small magneti
 �eld. If we plot boththe 
ontributions (σ = 1 and σ = −1) to dI/dVds in the very weak �eld regime then, dueto overlap, no magneti
 �eld splitting 
an be observed. We 
an 
al
ulate, however, theshifts in the 
omponent resonan
e for σ = ν = ±1. In �gure 4.5 we plot the terms in thedi�erential 
ondu
tan
e (in units of G0) given by equation (4.38) as a fun
tion of eV/∆̃,where we use σ =↑ in (4.38).We take values 
orresponding to the Kondo regime, with R = η̃ = 2 (ε̃d,σ(h) = ση̃h), and asmall �eld h/∆̃ = 0.05 (π∆̃ = 4TK). As explained above we have distinguished the di�erent
ontributions from (a) the 
ase for the non-intera
ting quasiparti
les as in equation (4.39)to (d) whi
h takes into a

ount the full expression (4.38) with the self-energy asymptoti
s(4.35). As di�erent 
ontributions in (4.38) are in
luded going from (a) to (
) we see thatthe peak position and width is redu
ed. We also see that the integral term arising from thevoltage dependen
e of Gret
d,σ(ω, eV ) 
auses a signi�
ant further redu
tion (d) of the magneti
shift beyond that estimated from the �rst term (
) in equation (4.38), su
h that it 
annotbe negle
ted. In an experimental 
ondu
tan
e measurement, the 
omponent 
ondu
tan
efor small �eld is not observable, however, due to the overlap of the two 
omponents. The
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~Figure 4.5: Left: The shift of the 
omponent resonan
e (ν = σ = 1) in the di�erential
ondu
tan
e (in units of G0) in a magneti
 �eld for h/∆̃ = 0.05 as a fun
tion of the biasvoltage eVds/∆̃, a

ording to the in
lusion of di�erent 
ontributions as des
ribed in thetext. The arrows indi
ate the respe
tive maxima. Right: The total di�erential 
ondu
tan
e(in units of e2/h) in the Kondo regime for larger magneti
 �eld values, 
al
ulated usingequation (4.38) taking into a

ount the full self-energy expansion from (4.35). Theseresults are asymptoti
ally exa
t for eVds/∆̃ ≪ 1 and approximate, based on a se
ondorder expansion in eVds for larger values.results for the di�erent 
ases in �gure 4.5 leave no doubt that the �nite voltage has animportant e�e
t on the peak form and position of the Kondo resonan
e in a magneti
 �eld- at least for small �elds. We expe
t that at larger �elds h ∼ TK the e�e
t will also not benegligible.4.3.2 Criti
al �eld for peak splittingThe arguments for the voltage dependen
e in this se
tion are restri
ted to the regimewhere eV is small 
ompared to ∆̃. These results are, however, su�
ient for us to dedu
ethe 
riti
al value of the magneti
 �eld hc at whi
h two distin
t peaks begin to appear inthe total di�erential response. For values of h < hc the di�erential 
ondu
tan
e will havea maximum at eV = 0, and for h > hc this will be
ome a minimum. Thus, we 
an writethe di�erential 
ondu
tan
e as
dI

dV
= G(0)(h) +G2(h) (eV )2 + O((eV )4) (4.40)and from the 
oe�
ient G2(h) we 
an determine the point at whi
h the sign 
hange o

ursas a fun
tion of h, and hen
e we 
an determine hc. In the �rst term in (4.38) we have toexpand the denominator up to se
ond order in (eV ). The 
ontribution to the real part of theself-energy to order ω2 and (eV )2 is proportional to ση̃(h)h. It might be thought that su
ha term should 
an
el out in taking the sum over the two spin 
omponents. However, thereis a σ-independent 
ontribution from a 
ross term with the e�e
tive Zeeman term σhη(h),



4.3 Di�erential 
ondu
tan
e for low voltage 75whi
h has to be in
luded. The 
ontribution from the se
ond integral term in equation(4.38) to order (eV )2 
an be easily be evaluated, as it is su�
ient to put ω = eV = 0 inthe integrand after the di�erentiation. As a �rst estimate using the above results the valueof hc 
an be 
al
ulated analyti
ally by dropping the h dependen
e of the parameters andwithout the real part 
ontribution to the self-energy expansion. The result, G2(hc) = 0,
an be expressed entirely in terms of ∆̃ and the Wilson ratio R = η̃(0) = 1 + Ũ/π∆̃,
h2

c

∆̃2
=

√

9 + 20(R − 1)2(1 + 5(R − 1)2) − 3

10R2(R− 1)2
. (4.41)In the non-intera
ting 
ase, R = 1 and hc/∆ = 1/

√
3 = 0.577 and in the Kondo regime,

R = 2, ∆̃ = 4TK/π, and hc/TK = 0.582, with TK given by (1.10). If the voltage dependen
eof the Green's fun
tion is negle
ted the result in the Kondo regime is hc/TK = 0.491,signi�
antly smaller than if this term is in
luded. This is in line with the observationin �gure 4.5 that the peak position is redu
ed to smaller voltages when non-equilibriume�e
ts are in
luded.The estimated 
riti
al magneti
 �eld is 
omparable with ∆̃, and for U 6= 0 it may notbe su�
ient to work to linear order in h. It is possible to work with an arbitrary magneti
�eld, but in this 
ase we have to use the �eld dependent renormalised parameters and thefull expansion of the self-energy to order ω2 and (eV )2 as given in (4.35). The equationfor the 
riti
al �eld hc be
omes
h2

∆̃2(h)
=

√

(3 − α(h)γ(h))2 + 4γ(h)(5 − α(h))(1 + 5γ(h)) − 3 + α(h)γ(h)

2γ(h)(5 − α(h))η̃(h)2
, (4.42)where α(h) = αω(h) + αV (h), and

γ(h) = π∆̃(h)Ũ2(h)[ρ̃0
d(0, h)]

3 = π∆̃(h)ρ̃0
d(0, h)(R(h) − 1)2. (4.43)Equation (4.42) is an impli
it equation for hc whi
h 
an be solved by iteration startingfrom the mu
h simpler result (4.41), obtained within the linear approximation. Of 
ourse,(4.42) redu
es to (4.41) if we drop the �eld dependen
e of the parameters and take α = 0.For a strong 
oupling situation (U/π∆ = 4) the result for the 
riti
al �eld obtainedby iterating equation (4.42) and using the h-dependent renormalised parameters is hc ≃

0.459∆̃ = 0.584TK. This di�ers only by 0.3% from the value obtained from (4.41). Thesmall di�eren
e is due to the fa
t that the various 
orre
tion terms due to the h dependen
eof the parameters in the more general formula (4.42) tend to 
an
el giving only a smallresultant 
hange.Plots of the total di�erential 
ondu
tan
e for various �elds above and below the 
riti
al�eld are displayed in �gure 4.5 (right). We have taken the full self-energy expansion as givenin (4.35) into a

ount, in
luding the �eld dependen
e of the renormalised parameters. Theresults are asymptoti
ally exa
t only for small eV and a more 
omplete theory is requiredto 
al
ulate the magnitude of the splitting at larger bias voltages. The major problem to
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 �eld in non-equilibriumbe solved is the dependen
e of the self-energy on the voltage bias term, when eV is of theorder of the Kondo temperature TK, so that a detailed 
omparison with experiment 
anbe made with the experimental results in this regime. In the next se
tion we present RPT
al
ulations for larger values of eV .4.4 Higher voltages and non-equilibrium RPT 
al
ulationsIn the last 
hapter in se
tion 3.4.2 we have seen that in the equilibrium AIM with magneti
�eld the spe
tral density 
ould be des
ribed well in the RPT framework, up to energiesand �elds of the order of the Kondo temperature TK. We saw that it was not enough to
onsider the se
ond order diagram, but a 
lass of repeated parti
le hole s
attering diagramshad to be taken into a

ount. In this se
tion we present results for the extension of these
al
ulations to the non-equilibrium. In order to 
al
ulate a good approximation for therenormalised self-energy we adopt a similar strategy as the one, whi
h has proven to besu

essful in the equilibrium 
ase. Therefore, the self-energy will be 
al
ulated by takinginto a

ount repeated quasiparti
le s
attering. Before we 
onsider these 
al
ulations forthe one-parti
le spe
tral fun
tion we look at the transverse spin sus
eptibility, in order toget a �rst impression what the e�e
t of the non-equilibrium situation and �nite voltage onthe dynami
 response fun
tions is.4.4.1 Non-equilibrium repeated quasiparti
le s
atteringWhen we sum up the repeated s
attering series for the transverse spin sus
eptibility wehave to be 
areful that the signs at the vertex are taken into a

ount 
orre
tly (
onvention�−�-sign for +-vertex). Hen
e, in addition to the matrix for the pair propagator Π
hσ
p−σ(4.24) we de�ne

Π̂
hσ
p−σ =

(

Π
hσ,(−−)
p−σ Π

hσ,(−+)
p−σ

−Π
hσ,(+−)
p−σ −Π

hσ,(++)
p−σ

)

. (4.44)Then the series 
orresponding to the diagrams in �gure 2.7 for the matrix for the transversespin sus
eptibility χt takes the form
χt = Π

hσ
p−σ

∞
∑

k=0

[Ũhσ
p−σΠ̂

hσ
p−σ]k = Π

hσ
p−σ[1− Ũhσ

p−σΠ̂
hσ
p−σ]−1. (4.45)The renormalised vertex Ũhσ

p−σ is given as in the equilibrium theory in equation (3.38).The expli
it result for χt(ω, eV ) is obtained by matrix inversion, where the determinant isgiven by
D = (1 − ŨΠ(−−))(1 + ŨΠ(++)) + Ũ2Π(−+)Π(+−). (4.46)We have dropped the redundant ph, σ indi
es in the last equations. Similar series expres-sions 
an be derived for other RPA like series in the Keldysh formalism.



4.4 Higher voltages and non-equilibrium RPT 
al
ulations 77We 
onsider the retarded, dynami
, transverse spin sus
eptibility and think of thevoltage like an external �eld,
χt(ω, eV ) = χ

(−−)
t (ω, eV ) − χ

(−+)
t (ω, eV ). (4.47)This result is similar to the earlier one in equation (3.36), whi
h is valid in equilibrium
ase and �nite magneti
 �eld. In �gure 3.5 we found ex
ellent agreement of the ph-RPTresults with the NRG results for χt(ω, eV = 0) and arbitrary �eld; h = 0 and h = TK wasshown there. Here we study the e�e
t of the �nite voltage and plot Imχt(ω, eV ) for h = 0(left) and h = TK (right) and various values of the voltage in �gure 4.6.

−10 −5 0 5 10
−40

−30

−20

−10

0

10

20

30

40

ω/T
K

Im
 χ

t(ω
,e

V
)/

π

 

 

eV/T
K
=0

eV/T
K
=1

eV/T
K
=2

eV/T
K
=4

−10 −5 0 5 10
−20

0

20

40

60

80

ω/T
K

Im
 χ

t(ω
,e

V
)/

π

 

 

eV/T
K
=0

eV/T
K
=1

eV/T
K
=2

eV/T
K
=4

Figure 4.6: The imaginary part of the retarded, dynami
, transverse spin sus
eptibility
χt(ω, eV ) for h = 0 (left) and h = TK (right) and various values of the voltage.The results for h = 0 and h = TK and zero voltage are identi
al with the ones of �gure3.5. In the 
ase of �nite voltage of the order of the Kondo temperature we �nd that thepeaks in the sus
eptibility are suppressed, both in the zero and �nite �eld 
ase. The e�e
tis visible more strongly for smaller magneti
 �elds. Generally, the results seem to give asound representation for the system in �nite voltage, and although we have no results froman alternative 
al
ulation to 
ompare to, the behaviour seems on general grounds to givea reasonable approximation for the quantity.Having derived expressions for the sus
eptibility we 
an now 
onsider the matrix el-ements of the to the repeated s
attering 
orresponding self-energy Σ

ph, whi
h have thesame stru
ture as for the se
ond order diagram (4.29),
Σr,ph,αβ

σ (ω) =
Ũ2

1

2πi

∫

dω2χ
(αβ)
t (ω − ω2)G̃

(0),αβ
d,−σ (ω2). (4.48)

χ
(αβ)
t (ω) was given in equation (4.45), and we only have to repla
e Ũhσ

p−σ by Ũ1. Thise�e
tive intera
tion Ũ1 is found in the equilibrium limit and given as in (3.45). The
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 �eld in non-equilibriumretarded self-energy is given by the 
ombination in equation (4.16). With the identity
2ImΣ−−

σ (ω) = −ImΣ−+
σ (ω) − ImΣ+−

σ (ω) (4.49)and relations for the sus
eptibility, we obtain as in (4.31),
Σ̃ph
−σ(ω) = −Σ̃ph

σ (−ω)∗. (4.50)Therefore also here the negative spin part 
an be obtain from the positive one (parti
lehole symmetri
 
ase). This implies for the imaginary part of the retarded Green's fun
tion
ImGret

d,−σ(ω, eV ) = ImGret
d,σ(−ω, eV ). (4.51)The appropriate renormalised retarded self-energy Σ̃ph,ret

σ (ω) is obtained in the equilibriumlimit by in
luding the 
ounter-terms as in equation (4.23).4.4.2 Single parti
le dynami
s in zero magneti
 �eldBefore 
onsidering the �eld and voltage dependent 
ase, we investigate purely the e�e
tof the �nite voltage on the Kondo resonan
e with the se
ond order RPT approximation.Namely, we �rst study the splitting of the Kondo resonan
e with �nite voltage in the RPTframe work in zero magneti
 �eld. From the asymptoti
 behaviour to order (eV )2 and ω2in equation (4.35) we immediately see that no splitting 
an o

ur due to the absen
e of amixed term. Rather than 
arrying out higher order asymptoti
 expansions, we analyse thesituation by numeri
ally evaluating the se
ond order diagrams (4.29). In �gure 4.7 (left)we display the ω-dependen
e of the imaginary part of the renormalised self-energy for anumber of voltages and a generi
 strong 
oupling situation (U/π∆ = 4).
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4.4 Higher voltages and non-equilibrium RPT 
al
ulations 79We 
an see that for �nite voltage the imaginary part at ω = 0 be
omes �nite, some-thing visible from the asymptoti
 expansion (4.35). For in
reasing voltages the value
|ImΣ̃

(2)ret
σ (0, eV )| goes over from a minimum to a maximum in the ω-dependen
e. Thee�e
t of this behaviour of the renormalised self-energy on the spe
tral density in �nitevoltage is shown in �gure 4.7 (right). We �nd that for in
reasing voltage the peak heightof the Kondo resonan
e is redu
ed from its equilibrium value For values of eV between

2 − 4TK the 
urvature at zero frequen
y 
hanges sign and the peak is seen to split in the�nite voltage. The numeri
al analysis shows a splitting to o

ur at eVsp ≃ 3.3TK. We 
ansee that the broadened peaks are a bit less than the voltage di�eren
e apart. Thereforeone is tempted to 
onne
t the physi
al origin of the peak splitting with the two 
hemi
alpotentials and the tenden
y of the Kondo resonan
e to be pinned to a Fermi level.To our knowledge up to now no pre
ise predi
tion about the splitting of the Kondoresonan
e in �nite voltage has been made. Fuji and Ueda (2003, 2005) �nd a splitting ina 4th order perturbation expansion in the bare U , but their values for eV are rather large,and it is not easy to 
ompare to their results. Experimentally, it is di�
ult to a

ess thevoltage dependen
e of the spe
tral density dire
tly. De Fran
es
hi et al. (2002) 
laim tohave observed su
h a splitting in a three terminal experimental setup at voltages of theorder of the Kondo temperature. Thus the results are in qualitative agreement. If thisexperimental setup a
tually 
orresponds to the two 
hannel Anderson model is, however,not 
ompletely 
lear.In 
on
lusion, we �nd in the non-equilibrium RPT s
heme for strong 
oupling a split-ting of the Kondo resonan
e when the voltage ex
eeds a 
riti
al eVsp of the order of theKondo temperature. We know that the theory presented is asymptoti
ally 
orre
t for smallvoltage. If it is, however, quantitatively 
orre
t for voltages of the order of TK is not 
lear.It would be interesting to 
ompare this quantitative predi
tion with other non-equilibriummethods.The quantity whi
h is dire
tly measured in most experiments is not the spe
tral density,but the di�erential 
ondu
tan
e dI/dV , (4.38). In �gure 4.8 we show the voltage depen-den
e of dI/dV 
al
ulated from the se
ond order RPT (left) and the repeated s
atteringseries (right) for zero magneti
 �eld.We have in
luded di�erent 
ontributions for 
omparison: the term with no non-equilibriumvoltage dependen
e (�No V-dep.�) 
orresponds to the evaluation based on the equilibriumdensity of states as des
ribed in equation (4.2). The label �First term� refers to only the�rst term in equation (4.38) in
luding the voltage dependen
e of the renormalised self-energy, whilst the thi
k lines (�Full expr.�) are 
al
ulated with the full expression (4.38).We 
an observe that in 
ontrast to the spe
tral density no peak splitting 
an be observedin the plots for the di�erential 
ondu
tan
e. This is in line with all experimental results forthis quantity. We 
an also see that the width of the peak is redu
ed, when the �nite voltageis taken into a

ount. This 
an be tra
ed ba
k to the in
reasing self-energy 
ontributionsfor �nite voltage. It suggests that an experimental estimate of the Kondo temperature
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Figure 4.8: Di�erent 
ontributions to the di�erential 
ondu
tan
e (in units of G0) for these
ond order 
al
ulation based on (4.29) (left) and the repeated s
attering diagrams, (4.48),(right). The meaning of the di�erent 
ontributions is explained in the text.from the peak width in dI/dV is likely to give a too small value. In both approximations(SO and ph-RPT) we see that for voltages of the order of TK a shoulder develops in thevoltage dependent 
al
ulations, and this is seen more pronoun
ed in the results for the fullexpression (4.2). This behaviour 
an be explained from the fa
t that the approximationsfor the renormalised self-energies be
ome ina

urate for these energy and voltage s
ales.4.4.3 Dynami
s and di�erential 
ondu
tan
e in �nite magneti
 �eldIn this subse
tion we present results for the extension of the equilibrium RPT 
al
ulationsin se
tion 3.4.2. There we had seen that in a �nite magneti
 �eld the repeated s
atteringresults for the renormalised self-energy gave a 
orre
tion to the free quasiparti
les spe
trasu
h that the resulting low energy spe
tra agreed well with NRG results. We had alsoseen at the beginning of this 
hapter [
f. �g. 4.1℄ that the results for the di�erential
ondu
tan
e based on equilibrium spe
tra gave a larger estimate of the Kondo splittingin magneti
 �eld as 
ompared with experimental results. Further we found in se
tion 4.3that the in
lusion of non-equilibrium e�e
ts resulted in a redu
tion of the peak positionin small magneti
 �eld. It is therefore reasonable to test whether the extension of theRPT 
al
ulation to the non-equilibrium 
ase at higher magneti
 �elds gives results forthe di�erential 
ondu
tan
e whi
h 
ompare well with experimental ones. In �gure 4.9 weshow the di�erential 
ondu
tan
e with the di�erent 
ontributions, as explained earlier, fora �nite �eld 
ase, h = TK.We 
an see that the peak in dI/dV is split sin
e the �eld ex
eeds the 
riti
al value hc. Thevalue of dI/dV at eV = 0 is redu
ed substantially as 
ompared to the zero �eld 
ase. By
omparing the dashed line with the full line we 
an also observe that the magnitude of thepeak splitting ∆
(theo),V
Kondo in the voltage dependent expressions is redu
ed substantially when
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Figure 4.9: Left: Di�erent 
ontributions to the di�erential 
ondu
tan
e (in units of G0)for the the repeated s
attering diagrams for h = TK. Right: Comparison of the imaginarypart of the renormalised self-energy as a fun
tion of voltage illustrating the non-equilibriume�e
ts for h = TK.
ompared with the result (4.2) 
orresponding to the equilibrium approximation (�No V-dep.�) for the di�erential 
ondu
tan
e. Su
h an e�e
t had been observed for one 
omponentof dI/dV in the asymptoti
 expansion in �gure 4.5 for a smaller �eld. To illustrate thee�e
t of the voltage dependen
e in the renormalised self-energy here we have in
ludeda plot on the left of �gure 4.9, where the imaginary part of Σ̃ph,ret
σ (ω, eV ) is shown asdependent on the voltage like Σ̃ph,ret

σ (ω = eV/2, eV ), whi
h 
orresponds to the �rst termin (4.38) and without the voltage dependen
e in the se
ond argument, Σ̃ph,ret
σ (ω = eV/2, 0).It is visible that the imaginary part of the |Σ̃ph,ret

σ (ω = eV/2, eV )| is larger, when the fullvoltage dependen
e is in
luded and thus the e�e
t on the Kondo peak in the di�erential
ondu
tan
e 
an be understood. The 
loser inspe
tion reveals that the redu
tion in themagnitude of the Kondo splitting in the non-equilibrium theory through the e�e
t of �nitevoltage is substantial, as seen for example in �gure 4.9 but also for other values of the �eld
h. In fa
t the resulting values for ∆

(theo),V
Kondo give a Kondo splitting whi
h is substantiallysmaller than the experimental result ∆

(exp),V
Kondo in �gure 4.1 (right). In other words thenon-equilibrium e�e
ts in the RPT 
al
ulation presented redu
e the splitting too mu
hfrom the equilibrium approximation as to give an agreement with the experimental values.At the time of writing it is not fully resolved why the ph-RPT approximation works wellin the equilibrium in �elds up to about 4TK (
ompared with NRG results), but does notexplain the quantum dot measurements in �nite voltage of the same order of magnitude.Generally, the non-equilibrium problem in �nite �eld is 
learly a di�
ult one sin
e the non-equilibrium spe
tral fun
tion for �elds h, frequen
ies ω and voltages eV , all of the orderof the Kondo temperature TK, have to be determined. Future resear
h on non-equilibriumKondo physi
s will show if an agreement between experimental and theoreti
al results
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 �eld in non-equilibriumfor the di�erential 
ondu
tan
e 
an be found, based on the equation (4.38), or if othere�e
ts have to be 
onsidered. Promising approa
hes in
lude non-equilibrium Bethe ansatz
al
ulations (Mehta and Andrei 2006) and reformulation of the non-equilibrium problemin terms of s
attering states (Oguri 2007).In summary, we have analysed the transport through a quantum dot in magneti
 �eldin this 
hapter. The des
ription is based on the two-
hannel AIM and a renormalisedperturbation theory in the Keldysh formalism. We derived an asymptoti
ally exa
t ex-pression for the low voltage behaviour of the renormalised self-energy and used it to studythe non-equilibrium e�e
ts on the di�erential 
ondu
tan
e for a small magneti
 �eld. Wealso presented results for dynami
 sus
eptibilities, spe
tral densities and the di�erential
ondu
tan
e for higher voltages and �elds (order of TK). These were based on se
ondorder and repeated s
attering RPT. We established that the �nite voltage plays an impor-tant role in the problem, and attempted to give a quantitative interpretation of the Kondosplitting observed experimentally in 
ondu
tan
e measurements. Based on our 
al
ulation,however, no quantitative agreement was found, and it remains to be seen in future resear
h,whether there are �aws in the 
al
ulation presented or additional features whi
h have notbeen taken into a

ount in the present approa
h play a role.



Chapter 5Lo
ally 
orrelated ele
trons in asuper
ondu
ting bath

The most important thing is to �nd outwhat is the most important thing.Shunryu Suzuki

The subje
t of this 
hapter is the AIM with a super
ondu
ting bath. We start by outliningthe NRG approa
h for this model, and introdu
e the basi
 features appearing, su
h as thesinglet-doublet ground state transition and the bound states in the gaps. Then we presentNRG results for the position and weight of the bound states, and also for the anomalousexpe
tation values fo
using on the symmetri
 model �rst. This is followed by a dis
ussionof the spe
tral fun
tions on all energy s
ales for di�erent parameters. The last se
tion isdevoted to the situation away from parti
le hole symmetry, where we give a global phasediagram for parameter regimes with singlet and doublet ground states.5.1 Kondo physi
s and BCS super
ondu
torsSo far in this part of the thesis we have studied the Anderson impurity model in a metalli
medium, fo
using on the e�e
t of a lo
al symmetry breaking in the spin 
hannel indu
edby a magneti
 �eld. In this se
tion we will investigate a situation where a symmetrybreaking in the bath rather than on the impurity site is in
luded. Spe
i�
ally, we will lookat a symmetry breaking in the 
harge 
hannel and study the 
ase where the bath is in aBCS super
ondu
ting state. This situation is of interest for understanding the e�e
t ofmagneti
 impurities in super
ondu
tors and re
ent experiments with quantum dots withsuper
ondu
ting leads. Due to the proximity e�e
t there is indu
ed symmetry breaking onthe impurity site. As a 
onsequen
e lo
alised ex
ited state (LES) with an energy within thesuper
ondu
ting gap 
an be indu
ed at the impurity site. Su
h states are well known fromsuper
ondu
tor-normal-super
ondu
tor (SNS) jun
tions and are usually 
alled Andreevbound states. For a weak on-site intera
tion the ground state of the system is usually asuper
ondu
ting singlet (S = 0) and the LES is an S = 1/2 ex
itation. If there is a strongrepulsion on the impurity site, su
h that single o

upation is favoured, we have a situation



84 Lo
ally 
orrelated ele
trons in a super
ondu
ting bathwhere a single spin is 
oupled to the super
ondu
ting medium. Similar to the 
ase with anormal, metalli
 bath the Kondo e�e
t plays a role here. The ground state 
an be a singlet,more spe
i�
ally a Kondo singlet, when both the lo
al intera
tion and the super
ondu
tinggap are not too large. Physi
ally, one 
an think of a situation where enough 
ontinuumstates are available to s
reen the impurity spin. If the lo
al intera
tion is, however, in-
reased beyond a 
riti
al value Uc the ground state be
omes a doublet (S = 1/2) with anuns
reened spin at the impurity site. In this situation the LES is an S = 0 ex
itation. Thisground state transition at zero temperature is an example of a quantum phase transitionwhi
h o

urs for a level 
rossing that depends on a system parameter (Sa
hdev 1999). Therelevant energy s
ales for this singlet-doublet transition to o

ur in the Kondo regime arethe Kondo temperature TK and the super
ondu
ting gap ∆sc. In early work by Matsuura(1979) the e�e
ts of impurities on super
ondu
tors in an interpolation theory were studied.For a single impurity it was found that the singlet-doublet transition o

urs at 4TK ≃ π∆sc(π/4 ≃ 0.78). There have also been NRG studies for a spin 
oupled to a super
ondu
tingbath (Kondo model) by Satori et al. (1992) and subsequent work by Sakai et al. (1993).In this work a more a

urate estimate for the transition is given, TK/∆sc ≃ 0.3, i.e. for
TK/∆sc > 0.3 we have a singlet ground state whilst for TK/∆sc < 0.3 the ground state isa doublet. It is also found there that at the transition, TK/∆sc ≃ 0.3, where the boundstate energy of the LES be
omes zero. Yoshioka and Ohashi (2000) presented anotherNRG study, for the Anderson impurity model with super
ondu
ting bath, where a largerparameter spa
e is a

essible. A more extensive 
omparison with mean �eld results is giventhere and the behaviour of the LES is analysed in detail. Many of the more re
ent papers(Rozhkov and Arovas 1999, Matsumoto 2001, Ve
ino et al. 2003, Siano and Egger 2004,Choi et al. 2004, Oguri et al. 2004) (theoreti
ally), (Buitelaar et al. 2002, van Dam et al.2006) (experimentally) fo
us on the impurity (quantum dot) embedded in two super
on-du
ting baths with di�erent (
omplex) super
ondu
ting order parameters. There a phaseshift dependent Josephson 
urrent 
an be observed whi
h varies with the model param-eters. Situations with two 
hannels with Josephson or nonequilibrium 
urrents are not
overed in this 
hapter. The analysis presented here fo
uses on the spe
tral properties ofan impurity in a super
ondu
ting bath. For low energies within the super
ondu
ting gapwe 
al
ulate the position and weight of the LES and also give the values for the indu
edanomalous on-site 
orrelation. We also present results for the spe
tral density for the diag-onal and o�diagonal 
orrelations fun
tions on all energy s
ales and present singlet-doubletground state phase diagrams for the symmetri
 and non-symmetri
 
ase. We start by out-lining some of the details for the NRG 
al
ulation with a super
ondu
ting medium. Manyaspe
ts dis
ussed in this 
hapter are published in referen
e Bauer et al. (2007b).



5.2 The Anderson model with super
ondu
ting medium 855.2 The Anderson model with super
ondu
ting medium5.2.1 NRG approa
hStarting point is the Anderson impurity model in the form
H = Hd +Hmix +Hsc. (5.1)The lo
al intera
ting part is given as before in equation (1.1) and also the mixing term hasthe usual form,

Hmix =
∑

k,σ

Vk(c†k,σcd,σ + h.c.). (5.2)In order to avoid 
onfusion in the notation with the super
ondu
ting gap we de�ne for this
hapter Γ = πV 2ρc(0) as the energy s
ale for hybridisation (ρc(0) = 1/2D as before). Thesuper
ondu
ting medium is given in a BCS mean�eld form
Hsc =

∑

k,σ

εkc
†
k,σck,σ − ∆sc

∑

k

[c†
k,↑c

†
−k,↓ + h.c.], (5.3)where ∆sc is the super
ondu
ting gap, whi
h is taken to be real for simpli
ity. In (5.3) we letthe summations run over all k in a wide band. Another energy s
ale ωD, the Debye 
uto� inBCS theory, 
ould enter at this stage to restri
t the summation. As shown by Satori et al.(1992) with a s
aling argument, this e�e
t does not alter the results substantially. We willkeep it in mind for some of the following arguments, but negle
t it later (see below).For the NRG approa
h we have to derive a dis
rete form of the Hamiltonian, whi
h 
anbe diagonalised 
onveniently in a renormalisation group s
heme des
ending to lower ener-gies. This is done in an analogous fashion as for a metalli
 medium, whi
h was des
ribedin se
tion 2.1. Essentially, there are three steps whi
h only a�e
t Hmix and Hsc:(1) Mapping to a one-dimensional problem, (2) logarithmi
 dis
retisation, (3) Basis trans-formation. We obtain �nally [
f. (2.1)℄

Hmix/D =

√

Γ

πD

∑

σ

(f †0σcd,σ + h.c.), (5.4)and
Hsc/D =

∞
∑

σ,n=0

γn+1(f
†
nσfn+1,σ + h.c.) − ∆sc

D

∞
∑

n=m0

(f †n↑f
†
n,↓ + h.c.) (5.5)where γn has the usual form (Hewson 1993a). m0 
orresponds to the site on the 
hain, atwhi
h the energy s
ale has rea
hed ωD, and it is expli
itly given by

m0 = − log(ωD/D)

log Λ
. (5.6)



86 Lo
ally 
orrelated ele
trons in a super
ondu
ting bathWe follow earlier works (Satori et al. 1992, Yoshioka and Ohashi 2000) and restri
t our
al
ulations to the 
asem0 = 0, whi
h 
orresponds to ωD = D. As mentioned above detailsabout the justi�
ation for this in the NRG approa
h have been dis
ussed by Satori et al.(1992).The iterative diagonalisation s
heme is set up in the same way as in the normal 
ase.Due to the anomalous term in the super
ondu
ting band the 
harge Q is not a goodquantum number of the system any longer, i.e. the 
harge operator does not 
ommute withthe Hamiltonian. Thus eigenstates are 
hara
terised only in terms of the spin quantumnumber S. The numeri
al RG transformation is de�ned by
HN+1 = R(HN ) =

√
ΛHN + ξ′N+1(f

†
NσfN+1,σ +h.c.)− ∆N+1(f

†
N+1,↑f

†
N+1,↓ + h.c.)

∣

∣

∣

N≥m0

,(5.7)with ξ′N as in 
hapter 2 and
∆N =

{

Λ(N−1)/2∆sc for N ≥ m0

0 otherwise.
(5.8)We 
an see that the super
ondu
ting gap be
omes a dominating energy s
ale for large Nand a relevant perturbation. It does not make sense to 
ontinue NRG iterations downto energies mu
h below this s
ale as there are no 
ontinuum states anymore in the gap.Therefore, we stop the NRG pro
edure at an Nmax, su
h that the typi
al energy s
ale

Λ−(Nmax−1)/2 is not too mu
h smaller than the super
ondu
ting gap ∆sc. More details forthe iterative diagonalisation are given elsewhere (Bauer 2007).5.2.2 Relevant Green's fun
tionsFor the Green's fun
tions it is 
onvenient to work in Nambu spa
e, C
†
d = (c†d,↑, cd,↓), with

2 × 2 matri
es. The relevant retarded Green's fun
tions are then
Gd(ω) = 〈〈Cd;C

†
d〉〉ω =

(

〈〈cd,↑; c
†
d,↑〉〉ω 〈〈cd,↑; cd,↓〉〉ω

〈〈c†d,↓; c
†
d,↑〉〉ω 〈〈c†d,↓; cd,↓〉〉ω

)

=

(

G11(ω) G12(ω)

G21(ω) G22(ω)

)

. (5.9)In the NRG approa
h we 
al
ulate G11 and G21 dire
tly and infer G22(ω) = −G11(−ω)∗,whi
h follows fromGret
A,B(ω) = −Gadv

B,A(−ω) andGret/adv
A,B (ω) = −Gret/adv

A†,B† (−ω)∗ for fermioni
operators A, B. Similarly, we 
an �nd G12(ω) = G21(−ω)∗. In the derivation one has tobe 
areful and in
lude a sign 
hange for up down spin inter
hange in the 
orrespondingoperator 
ombination.In the non-intera
ting 
ase we 
an work out the Green's fun
tion matrix exa
tly. To doso rewrite the term Hsc by introdu
ing the ve
tor of operators and the symmetri
 matrix
Ck :=

(

ck,↑

c†−k,↓

)

, Ak :=

(

εk −∆sc

−∆sc −εk

)

. (5.10)
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ondu
ting medium 87Then Hsc 
an be written as
Hsc =

∑

k

C
†
kAkCk.The matrix Green's fun
tion in the super
ondu
ting lead is then given by g

k
(iωn) =

(iωn12 −Ak)−1,
g

k
(iωn)−1 = iωn12 − εkτ3 + ∆scτ1, (5.11)where τi are Pauli matri
es. Note that for a three 
omponent ve
tor b

(a12 + b · τ )−1 =
12

a2 − b2
(a12 − b · τ ), (5.12)and hen
e

g
k
(iωn) =

iωn12 + εkτ3 − ∆scτ1
(iωn)2 − (ε2k + ∆2

sc)
. (5.13)In the wide band limit with a 
onstant density of states the hybridisation term takes theform

V 2 1

N

∑

k

g
k
(iωn) = −Γ

iωn12 + ∆scτ1
E(iωn)

. (5.14)We are mostly interested in the limit of zero temperature (iωn → ω ∈ R) here, and thefun
tion in the denominator E(z) after analyti
 
ontinuation reads
E(ω) =

{

−isgn(ω)
√

ω2 − ∆2
sc for |ω| > ∆sc

√

∆2
sc − ω2 for |ω| < ∆sc

. (5.15)In the non-intera
ting 
ase for T = 0, we have therefore
G0

d(ω)−1 = ω12 − εdτ3 + Γ
ω12 + ∆scτ1

E(ω)
. (5.16)The Green's fun
tion is obtained by matrix inversion, whi
h yields with (5.12)

G0
d(ω) =

1

D(ω)

[

ω
(

1 +
Γ

E(ω)

)12 −
Γ∆sc

E(ω)
τ1 + εdτ3

]

, (5.17)where the determinant, D(ω) := det(G0
d(ω)−1) is given by

D(ω) = ω2
[

1 +
Γ

E(ω)

]2
− Γ2∆2

sc

E(ω)2
− ε2d. (5.18)The full Green's fun
tion matrix Gd(ω)−1 at the impurity site is given by the Dyson matrixequation

Gd(ω)−1 = G−1
0 (ω) − Σ(ω), (5.19)where we have introdu
ed the self-energy matrix Σ(ω).



88 Lo
ally 
orrelated ele
trons in a super
ondu
ting bathSelf-energy using the higher F -Green's fun
tionAs des
ribed earlier in 
hapter 2 there is a method to 
al
ulate the self-energy employing ahigher F -Green's fun
tion, and it 
an also be used for the super
ondu
ting 
ase. In orderto derive the equations of motions for the 
orrelation fun
tions, the identity
ω〈〈A;B〉〉ω + 〈〈[H,A], B〉〉ω = 〈[A,B]η〉 (5.20)(η = + for fermions) is useful. The 
al
ulation taking into a

ount all o�diagonal termsyields the following matrix equation

G−1
0 (ω)Gd(ω) − UF (ω) = 12, (5.21)with the matrix of higher Green's fun
tions F (ω),

F (ω) =

(

F11(ω) F12(ω)

F21(ω) F22(ω)

)

. (5.22)We have introdu
ed the matrix elements F11(ω) = 〈〈cd,↑n↓; c
†
d,↑〉〉ω, F12(ω) = 〈〈cd,↑n↓; cd,↓〉〉ω,

F21(ω) = −〈〈c†d,↓n↑; c
†
d,↑〉〉ω and F22(ω) = −〈〈c†d,↓n↑; cd,↓〉〉ω. In the NRG we 
al
ulate F11and F21 and the others follow from F12(ω) = −F21(−ω)∗ and F22(ω) = F11(−ω)∗. We 
ande�ne the self-energy matrix by

Σ(ω) = UF (ω)Gd(ω)−1. (5.23)The properties of the Green's fun
tion and the higher F -Green's fun
tion lead to therelations Σ12(ω) = Σ21(−ω)∗ and Σ22(ω) = −Σ11(−ω)∗ for the self-energies. We 
antherefore 
al
ulate the diagonal self-energy Σ(ω) = Σ11(ω) and the o�diagonal self-energy
Σoff(ω) = Σ21(ω) and dedu
e the other two matrix elements from them. With the relation(5.23) between G, F and Σ the Dyson equation is re
overed in (5.21),

Gd(ω)−1 = G−1
0 (ω) − Σ(ω). (5.24)Therefore, the Green's fun
tion 
an be 
al
ulated from the free Green's fun
tion as givenin (5.17) and the self-energy as 
al
ulated from (5.23). Details for the matrix elements forthe a
tual 
al
ulation are given elsewhere (Bauer 2007).5.2.3 Andreev bound statesThe denominator of the Green's fun
tion in equation (5.19) 
an vanish inside the gap

|ω| < ∆sc. As the imaginary part of the self-energy is zero in the gap this leads toex
itations with in�nite lifetime there. They 
orrespond to the lo
alised ex
ited states(LES) or Andreev bound states. For the non-intera
ting 
ase they are determined by theequation D(ω) = 0 [
f. eq. (5.18)℄,
ω2 − ε2d − Γ2 +

2ω2Γ

E(ω)
= 0. (5.25)
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ondu
ting medium 89This is an equation in ω2, thus if E0
b is a solution so is −E0

b . In general, in the intera
ting
ase we have to analyse the equation
[

ω−εd+
ωΓ

E(ω)
−Σ(ω)

][

ω+εd+
ωΓ

E(ω)
+Σ(−ω)∗

]

−
[Γ∆sc

E(ω)
−Σoff(ω)

][Γ∆sc

E(ω)
−Σoff(−ω)∗

]

= 0.(5.26)On
e the self-energies are 
al
ulated it is possible to solve this equation iteratively. Wewill develop a simpli�ed des
ription by using an approximate form of the self-energy. Firstnote that in the gap, |ω| < ∆sc, ImΣ(ω) = ImΣoff(ω) = 0. We expand the real part of thediagonal self-energy Σ(ω) to �rst order around ω = 0, whi
h is motivated by the Fermiliquid expansions for the normal 
ase and the numeri
al results for the behaviour in thisregime. The o�diagonal self-energy is approximated by the real 
onstant Σoff(0), as itdoes not vary mu
h for small ω. This approximation for the self-energy is easy to justifyif the gap is small parameter, su
h that it only 
overs small values of ω, but also worksreasonably well for larger gap parameters. Hen
e, we �nd instead of (5.26) the equation
ω2 − ε̃2d − Γ̃2 − z2Σoff(0)2 +

2Γ̃[ω2 + ∆sczΣ
off(0)]

E(ω)
= 0, (5.27)where renormalised parameters ε̃d = z[εd + Σ(0)] and Γ̃ = zΓ were introdu
ed. As usual

z−1 = 1−Σ′(0). The form of the equations (5.25) and (5.27) is very similar and both 
anbe easily solved numeri
ally to give the bound state solutions ω = Eα
b = αEb, α = ±. Dueto the o�diagonal self-energy term Σoff(0) a simple interpretation of the intera
ting theorybased on using renormalised parameters ε̃d, Γ̃ in equation (5.25) for the non-intera
tingtheory is, however, not possible.Based on the same idea we 
an give approximate expressions for the weights of thebound states wα

b by expanding the diagonal part of the Green's fun
tion around ω = Eα
b .We 
an write the Green's fun
tion in the gap near the bound states ω ≃ ±Eb as

G(ω) =
w−

b

ω − E−
b + iη

+
w+

b

ω − E+
b + iη

. (5.28)Using the above approximation for the self-energy the weights are found to be
wα

b =
z

2
E(Eb)

2
E(Eb)(1 + α ε̃d

Eb
) + Γ̃

E(Eb)2(E(Eb) + 2Γ̃) + Γ̃(E2
b + ∆sczΣoff(0))

. (5.29)In a more sophisti
ated approximation one 
ould 
onsider an expansion of the self-energiesaround the bound state energies Eb rather than ω = 0. Various things 
an be seen fromthe expression (5.29). First we note that in the parti
le hole symmetri
 
ase, ε̃d = 0,
w+

b = w−
b = wb. As the weights are proportional to the renormalisation fa
tor z they areexpe
ted to de
rease with in
reasing intera
tion U . One 
an also easily see that for boundstates 
lose to the gap, |Eb| → ∆sc, the weights go to zero, wα

b → 0.A useful limit to obtain analyti
al results is to 
onsider the 
ase where the super
on-du
ting gap is a large parameter, ∆sc → ∞ (Oguri et al. 2004). Then one 
an show that



90 Lo
ally 
orrelated ele
trons in a super
ondu
ting baththe problem essentially redu
es to a lo
alised model with an anomalous on-site term whi
his of the order of the hybridisation Γ. We will write it in the form
Hd =

∑

σ

ξd(c
†
d,σcd,σ − 1) − Γ[c†d,↑c

†
d,↓ + h.c.] +

U

2

(

∑

σ

nd,σ − 1
)2
, (5.30)where ξd = εd + U/2. Without intera
tion this Hamiltonian 
an be diagonalised by aBogoliubov transformation and the ex
itation energies Ed =

√

ξ2d + Γ2 are found, whi
husually lie in the gap as Γ ≪ ∆sc as assumed initially. This gives a dire
t pi
ture of theemergen
e of the Andreev bound states for large ∆sc.We 
an dis
uss the ground state 
rossover from the singlet to the doublet state in termsof the single site Hamiltonian (5.30). First note that the S = 1/2 (doublet) states, | ↑〉 and
| ↓〉, are eigenstates of (5.30) with energy 0. The S = 0 singlet states, empty site |0〉 anddoubly o

upied site | ↑↓〉, are not eigenstates of (5.30). However, the linear 
ombinationsin the BCS-form,

|Ψ1〉 = ud|0〉 + vd| ↑↓〉, |Ψ2〉 = vd|0〉 − ud| ↑↓〉, (5.31)are eigenstates with eigenvalues E1 = −Ed + U/2 and E2 = Ed + U/2, respe
tively. The
oe�
ients ud, vd are given by
u2

d =
1

2

(

1 +
ξd
Ed

)

, v2
d =

1

2

(

1 − ξd
Ed

)

. (5.32)The ground-state is therefore a singlet as long as E1 < 0 and a doublet otherwise. The
ondition E1 = 0 or
ξ2d
U2

+
Γ2

U2
=

1

4
(5.33)de�nes therefore the phase boundary for the transition. It is a semi
ir
le in the (ξd/U)-

(Γ/U)-plane with radius 1/2, whi
h is shown in �gure 5.11. How this phase boundarylooks like for �nite gap ∆sc will be investigated later in se
tion 5.5, when we look at thesituation away from parti
le hole symmetry. In the 
ase of parti
le hole symmetry ξd = 0and the 
ondition redu
es to Γ = U/2.Having established the most important relations we will in the next se
tion presentresults for behaviour of the bound state in the symmetri
 AIM with super
ondu
ting bathwith a �nite gap parameter.5.3 Bound state behaviour for the symmetri
 modelThe position and weight of the Andreev bound states in the gap 
an be 
al
ulated fromthe NRG routine for spe
tral fun
tions as the lowest spe
tral ex
itation (SE). The boundstates 
orrespond to a single ex
itation with energy E±
b = ±Eb, |Eb| < ∆sc, and 
arry a
ertain weight wb. In �gure 5.1 we show the bound state energies ±Eb for a series of values
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 model 91of the on-site intera
tion U and di�erent values for the gap in the medium ∆sc. Here andin the following we take a �xed value for the hybridisation, πΓ = 0.2. All quantities 
anbe thought of as being s
aled by half the band width D = 1.
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Figure 5.1: Bound state energies Eb (left) and weights wb (right) for various U/πΓ and
∆sc. Both quantities have been s
aled by the 
orresponding value of ∆sc.We 
an see that in the non-intera
ting 
ase the bound state energy for the 
ases withsmall gap (∆sc = 0.001, 0.01) is very 
lose to ±∆sc and de
reases to zero with in
reasingintera
tion. For a 
riti
al value Uc the nature of the ground-state 
hanges from a singlet(S = 0) to a doublet (S = 1/2) and at this point Eb = 0. For this transition we 
an thinkof the positive E+

b and negative solution E−
b for the bound states as 
rossing at ω = 0.If the the intera
tion is in
reased further, ∣∣E±

b

∣

∣ be
omes �nite again and in
reases with
U . The larger the gap ∆sc the smaller 
riti
al value Uc for this ground state transitionbe
omes. In the 
ase where ∆sc is of the order of Γ - as 
an be seen for the 
ase ∆sc = 0.06- the bound state energy Eb lies within the gap, deta
hed from the 
ontinuum part at ∆sc,already for the non-intera
ting 
ase, but otherwise shows a similar behaviour as des
ribedabove.On the right hand side of �gure 5.1 the weight wb of these bound states is plotted.We have marked the position Uc of the singlet-doublet 
rossover point by a symbol onthe x-axis. The two 
urves for a value of the gap ∆sc = 0.001 and ∆sc = 0.01 have amaximum for some intermediate value of U whi
h is smaller than the 
riti
al Uc for theground state transition. For the other 
urve (∆sc = 0.06) the weight is maximal for thenon-intera
ting 
ase. In all 
ases the weight be
omes very small for large U . Note thatwe plot the weight s
aled by the gap, wb/∆sc, and therefore the absolute values are largerfor the 
ases with larger super
ondu
ting gap. At the singlet-doublet transition we 
ansee dis
ontinuous behaviour as the weight 
hanges sharply. This is a feature of the zerotemperature 
al
ulation, where the matrix elements 
hange their values when the levels
ross on in
reasing U , su
h that the nature of the ground state 
hanges. It will be seenfor the anomalous 
orrelations as well. For �nite temperature this dis
ontinuity be
omessmooth.



92 Lo
ally 
orrelated ele
trons in a super
ondu
ting bathIn the last se
tion we dis
ussed how the bound state energy, whi
h so far we havededu
ed from the spe
tral ex
itations (SE), 
ould also be 
al
ulated from the bound stateequation (BE) (5.26). The latter was derived by expanding the self-energy to �rst order.It involves the renormalised parameters ε̃d, Γ̃ and the 
onstant value of the o�diagonalself-energy Σoff(0). In �gure 5.2 we 
ompare the bound state energies 
al
ulated by thesetwo methods for two values of the gap ∆sc = 0.005 (left) and ∆sc = 0.06 (right).
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Figure 5.2: Bound state energies Eb as 
al
ulated from the spe
tral ex
itations (SE) andfrom the bound state equation (BE) (5.26) with renormalised parameters for ∆sc = 0.005(left) and for ∆sc = 0.06 (right) for various U/πΓ.We 
an see that for values of U < Uc the agreement is ex
ellent in both 
ases. However,when U ≥ Uc we �nd less a

urate values with the method based on bound state equation(BE) with renormalised parameters. Sin
e the method to 
al
ulate the bound state energyfrom the spe
tral ex
itations (SE) is very a

urate there must be some problem with theBE method. The 
loser inspe
tion of the numeri
al results for the diagonal and o�-diagonalself-energies reveals that the linear and 
onstant approximation made to derive the boundstate equation with renormalised parameters (5.26) be
omes less valid for U ≥ Uc.In the last se
tion we also derived an expression (5.29) for the weights wb of the boundstates in the gap. It 
an be expressed in terms of the renormalised parameters ε̃d, Γ̃, theo�diagonal self-energy Σoff(0) and the bound states energy Eb. In �gure 5.3 we 
omparethe weights 
al
ulated from the spe
tral ex
itations (SE) with the ones from the boundstate equation (BE) analysis with renormalised parameters. We show the results for thesame parameters ∆sc = 0.005 (left) and ∆sc = 0.06 (right). We 
an see for both 
asesthat the overall behaviour of the weights as a fun
tion of U is des
ribed reasonably wellby equation (5.29). It is, however, 
learly visible that the agreement is between the SEand BE values is mu
h better in the singlet regime for U < Uc. This is similar as observedfor the values of the bound states energies Eb in �gure 5.2, and the reason for this is thesame. The dis
ontinuity for the weight is not reprodu
ed by the approximation based onequation (5.29). As 
an be seen from that equation this would require a sudden 
hangein the self-energy as fun
tion of U , whi
h was not found with su�
ient a

ura
y in the
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Figure 5.3: Weights wb for the Andreev bound states as 
al
ulated from the spe
tralex
itations (SE) and from the equation (5.29) with renormalised parameters for ∆sc =

0.005 (left) and for ∆sc = 0.06 (right) for various U/πΓ.present 
al
ulation. This 
an partly be attributed to the broadening pro
edure involvedand to the ina

ura
ies when 
al
ulating the numeri
al derivative.The anomalous expe
tation value 〈d↑d↓〉 is an indi
ator for the strength of the proximitye�e
t of the super
ondu
ting medium at the impurity site and quanti�es the indu
ed on-site super
ondu
ting 
orrelations. In the following �gure 5.4 we show the dependen
e of
〈d↑d↓〉 on the intera
tion U/πΓ for the same values of ∆sc as in �gure 5.1. The values ares
aled by the gap ∆sc.
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Figure 5.4: Left: Anomalous expe
tation values as a fun
tion of U/πΓ for various ∆sc. Thevalues are s
aled by the gap ∆sc. Right: Phase diagram for singlet and doublet ground-state as a fun
tion of ∆sc/πΓ and U/πΓ. The dotted line 
orresponds to U/Γ = 2, whi
hgives the singlet doublet transition for ∆sc → ∞. The dashed line gives the transition as
TK/∆sc ≃ 0.3 with TK given in equation (5.34).We see that as a general trend 〈d↑d↓〉 de
reases for in
reasing on-site intera
tion. This isexpe
ted sin
e the super
ondu
ting 
orrelations are suppressed by the repulsive intera
tion.We have marked the ground state transition with a symbol on the x-axis, and we see that
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ondu
ting bath
〈d↑d↓〉 
hanges dis
ontinuously in magnitude and sign there. The sign 
hange is due to aphase 
hange of π of the lo
al order parameter whi
h o

urs at the transition as dis
ussedin referen
e Balatsky et al. (2006). It is 
hara
teristi
 for this zero temperature quantumphase transition. At �nite temperature this behaviour be
omes 
ontinuous. In the situationof in�nite gap in the medium, as dis
ussed above, at the transition point 〈d↑d↓〉 drops tozero for the singlet ground state.On the right hand side of �gure 5.4 we present a phase diagram for singlet and doubletstate for the symmetri
 model. For small U the ground state is always a singlet. It 
anbe
ome a doublet when U/πΓ is in
reased. The 
riti
al Uc for the transition de
reases within
reasing value of the gap ∆sc as 
an be seen in the diagram. In the limit ∆sc → ∞, the
riti
al intera
tion is given by Uc/πΓ = 2/π, whi
h is shown with a dotted verti
al line inthe �gure. As mentioned earlier there have been estimates of the boundary between singletand doublet in the strong 
oupling regime (Satori et al. 1992, Yoshioka and Ohashi 2000)as TK/∆sc ≃ 0.3. In this 
ase the Kondo temperature is given as by Yoshioka and Ohashi(2000) (eq. 3.9),

TK = 0.182U

√

8Γ

πU
e−πU/8Γ. (5.34)We have added a dashed line representing this result whi
h agrees with the ones presentedhere in the strong 
oupling regime, but starts to deviate for smaller values of U . In the limit

∆sc → 0 the ground-state is a singlet for any value of U as the Kondo e�e
t always leadsto a s
reened impurity spin in a singlet formation. For �nite gap the nature of the singletground state 
an di�er depending on the magnitude of U . We expe
t a �super
ondu
tingsinglet� for small U and a Kondo singlet for larger U . We will 
omment on this again atthe end of the next se
tion.5.4 Spe
tral fun
tionsIn this se
tion we present results for the behaviour of the spe
tral fun
tions. The diagonaland o�diagonal Green's fun
tion 
an be 
al
ulated dire
tly from the Lehman representationas illustrated in 
hapter 2 and we use the method based on the Anders-S
hiller basis. Asin this pro
edure the ex
itations for the spe
tral peaks in the Green's fun
tion have to bebroadened, it is di�
ult like this to obtain a sharp spe
tral gap at |ω| = ∆sc. We 
an,however, determine the self-energy 
omponents from the Green's fun
tion and the higher
F -Green's fun
tion [
f. eq. (5.23)℄ as explained earlier. We use the exa
t expression for thenon-intera
ting Green's fun
tion G0

d(ω) in equation (5.17), whi
h in
ludes a sharp spe
tralgap, and the Dyson matrix equation (5.24) to 
al
ulate the diagonal and o�diagonal Green'sfun
tion. This is the way the Green's fun
tion are 
al
ulated for the region outside thegap, |ω| > ∆sc. Inside the gap, |ω| < ∆sc, we have extra
ted the delta-fun
tion peaks forthe Andreev bound states energies Eb and weights wb from the NRG ex
itation data forthe Green's fun
tion. The delta-fun
tions are represented by an arrow. Altogether the
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tions 95diagonal spe
tral fun
tion ρ(ω) = −ImG(ω)/π 
an then be written in the form
ρ(ω) =

∑

α=±

wbδ(ω − Eα
b ) + ρcont(ω), (5.35)where ρcont(ω) is the 
ontinuum part for |ω| > ∆sc.In �gure 5.5 we show the resulting spe
tral fun
tion (5.35) for ∆sc = 0.005 for thediagonal Green's fun
tion at the impurity site for a number of di�erent values of U . Asbefore πΓ = 0.2 throughout the se
tion.
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Figure 5.5: The spe
tral density ρ(ω) for various values of U for the whole energy regime(left) and the region in the gap (right); ∆sc = 0.005.In the plot on the left hand side we give the spe
trum over the full energy range. One
an see the development of the atomi
 limit peaks at ±U/2 as the intera
tion is in
reased,and also the beginning of the formation of a Kondo resonan
e at low frequen
ies. As Uin
reases the Kondo resonan
e be
omes narrower, its formation, however, is suppressed,sin
e in the gap region the 
ontinuum part of the spe
trum vanishes. In the gap there areonly the delta fun
tion 
ontributions from the Andreev bound states. These are shownin an enlarged plot in �gure 5.5 on the right, where the arrows give the position of thebound state E±
b and their height indi
ates the spe
tral weight wb. It 
an be seen that theposition of the bound state 
hanges when we in
rease the intera
tion. The weight �rstin
reases and then de
reases as a fun
tion of U , whi
h 
orresponds to the features whi
hwas dis
ussed expli
itly in the last se
tion in �gure 5.1. Note that the largest value of

U shown, is greater than the 
riti
al Uc for the singlet-doublet transition (Uc/πΓ ≃ 3.2).In the high energy spe
trum there is no signi�
ant 
hange to be seen in the behaviour,however at low energies we observe the 
rossing of the bound state energies at ω = 0 at
Uc.The o�diagonal part of the spe
trum ρoff(ω) = −ImGoff (ω)/π has a similar general formas the diagonal part,

ρoff(ω) =
∑

α=±

w̄α
b δ(ω − Eα

b ) + ρoff
cont(ω), (5.36)
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Figure 5.6: The spe
tral density ρoff(ω) for various values of U for the whole energy regime(left) and the region in the gap (right); ∆sc = 0.005.where the weights w̄α
b 
an have positive and negative values. For half �lling the spe
trum

ρoff(ω) is an asymmetri
 fun
tion of ω. In �gure 5.6 we show the spe
tral fun
tion (5.36)for ∆sc = 0.005 for the o�diagonal Green's fun
tion at the impurity site for a numberof di�erent values of U . In the plot on the left hand side we 
an see the behaviour forthe 
ontinuum part outside the gap. Noti
e that the frequen
y range only extends up to
ω = ±0.1. We 
an see a peak 
lose to ω = ±∆sc, whi
h is suppressed for larger U and
hanges sign towards the singlet-doublet transition. The behaviour of the bound statepeaks in the o�diagonal spe
trum is displayed on the right hand side of the �gure. We 
ansee similar features as observed before in the diagonal part, i.e. the weight �rst in
reaseswith U and then de
reases. If we follow the ex
itations with the weight of the same signwe 
an see, that at the singlet-doublet transition the bound state levels 
ross at ω = 0.In �gure 5.7 we show the diagonal spe
tral fun
tion for a larger gap ∆sc = 0.02 for thediagonal Green's fun
tion at the impurity site for a number of di�erent values of U .
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Figure 5.7: The spe
tral density ρ(ω) for various values of U for the whole energy regime(left) and the region in the gap (right); ∆sc = 0.02.The overall pi
ture on the left is similar to the 
ase in �gure 5.5 with the smaller gap. Due
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tral fun
tions 97to the larger gap the formation of the 
entral Kondo resonan
e is 
ompletely suppressed,but the high energy spe
trum is as before. From the behaviour within the gap (right sidein �gure 5.7) we 
an see that the bound state position E±
b goes to zero for smaller U thanin the 
ase ∆sc = 0.005, and hen
e the ground state transition o

urs for smaller Uc forthe larger gap (Uc/πΓ ≃ 2.03). This was dis
ussed in the last se
tion. For the values of Ushown the spe
tral weight of the bound states wb de
reases with in
reasing U . Note thatthe weights wb of the peaks in the gap have been s
aled di�erently in �gures 5.5 and 5.7,so that their height should not be 
ompared dire
tly.The spe
tral fun
tion of the o�diagonal Green's fun
tion at the impurity site (5.36) forthis value of the gap, ∆sc = 0.02, is shown in �gure 5.8 for a number of di�erent values of

U .
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Figure 5.8: The spe
tral density ρoff(ω) for various values of U for the whole energy regime(left) and the region in the gap (right); ∆sc = 0.02.For larger frequen
ies outside of the gap (left) we 
an see a peak near ω = ∆sc, whoseheight is redu
ed due to the larger intera
tion. At larger frequen
ies we �nd that the tailsdevelop a broad peak for larger values of U . This has not been observed in the 
ase withthe smaller gap shown in �gure 5.6. Also a sign 
hange of the low energy peak 
an beobserved as before. The behaviour near and in the gap (right) 
an be understood as beforefor the bound states, where in this 
ase we have two bound states for the singlet groundstate and two for the doublet ground state.We have analysed the transition from a singlet to a doublet ground state in detail in thespe
tral ex
itations. Within the parameter regime for the singlet ground state there are twopossibilities for the nature of the ground state. It 
an be a singlet 
orresponding to an s-wave pair like in the wave fun
tion given in equation (5.31), whi
h is a superposition of zeroand double o

upation. This is the natural singlet ground state for a BCS super
ondu
tor.In the strong 
oupling regime U/πΓ > 2 we 
an, however, also have a s
reened lo
al spin,i.e. a Kondo singlet. The wave fun
tion has a di�erent form then and 
onsists rather of asingly o

upied impurity state 
oupled to the spins of the medium as many-body singlet.In our NRG 
al
ulations it is not easy to distinguish these di�erent natures of the singlet



98 Lo
ally 
orrelated ele
trons in a super
ondu
ting bathground states. We 
an, however, get an indi
ation for what is favoured from the twoparti
le response fun
tions in the spin and in the 
harge 
hannel. In �gure 5.9 we showthe imaginary part of the dynami
 
harge and spin sus
eptibility, χc(ω) [
f. eq. (1.25)℄and χs(ω) [
f. eq. (1.24)℄, for ∆sc = 0.005 and a series of values for the intera
tion U .
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Figure 5.9: The imaginary part of the dynami
 
harge (left) and spin (right) sus
eptibilityvarious values of U and ∆sc = 0.005. The s
ale on both axes is the same su
h that theresults 
an be 
ompared well.We 
an see that the peaks in the 
harge sus
eptibility ex
eed the ones in the spin sus
ep-tibility for zero and weak intera
tion indi
ating the dominan
e of the symmetry breakingin the 
harge 
hannel, and a ground state of super
ondu
ting singlet nature. However,for U/πΓ > 1 the spin sus
eptibility develops large and narrow peaks at low frequen
y.This signals the importan
e of the spin �u
tuations and low energy spin ex
itations andindi
ates a ground states of a s
reened spin. In 
ontrast the de
reasing peaks in the 
hargesus
eptibility for large U represent the e�e
t of suppressing the super
ondu
ting on-site
orrelations.5.5 Away from parti
le hole symmetrySo far we have 
onsidered the situation at parti
le-hole symmetry, εd = −U/2. In thisse
tion we will brie�y dis
uss a few aspe
ts that 
hange in the situation away from parti
lehole symmetry. Let us 
onsider the 
ase where for a given gap ∆sc, on-site intera
tion U ,and hybridisation Γ, the ground-state of the system is a doublet at half �lling, ξd = 0.When ξd is in
reased, we �nd that a transition to a singlet state 
an o

ur at a 
ertainvalue ξc
d. Similar to the 
ases shown for the symmetri
 model the ground state 
hange isa

ompanied by vanishing energy of the bound state Eb. This is illustrated in the following�gure 5.10, where we have plotted the bound state energy Eb for �xed ∆sc = 0.01, twovalues of U/πΓ = 3, 5 and a series of values of the on-site energy s
aled by U , ξd/U . Asbefore we have πΓ = 0.2.The 
riti
al intera
tion for the ground state transition for this 
ase at half �lling is Uc/πΓ ≃
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Figure 5.10: The dependen
e of the bound state energies Eb (left) and weights wb (right)on ξd/U for ∆sc = 0.01 and U/πΓ = 3, 5.
2.6, su
h that both 
ases are have a doublet ground state for ξd = 0. We 
an see thatwith in
reasing asymmetry ξd the bound state energy |Eb| �rst de
reases towards zeroand then in
reases again in the singlet regime for ξd > ξc

d. As in the symmetri
 
ase thesinglet-doublet transition is a

ompanied by |Eb| → 0. The weights for these bound statesare shown on the right hand side of �gure 5.10. Away from parti
le hole symmetry theweight w+
b for the positive energy E+

b and w−
b the one for the negative bound state E−

b arenot equal, as was already visible in equation (5.29). We 
an see that the weights w±
b startto assume di�erent values when ξd is in
reased from 0. At the ground state transition thevalues 
hange dis
ontinously similar as observed in the half �lled 
ase. If we follow the boththe positive weight w+

b and the negative w−
b separately the weights 
ross at the transitionpoint. If, however, we think of the bound states as 
rossing at zero, i.e. w+

b ↔ w−
b at thetransition, a more dire
t 
onne
tion 
an be dedu
ed from the results shown. In the singletphase there is a maximum for both the positive and the negative bound state weight, morepronoun
ed for w+

b .Also in the asymmetri
 
ase it is possible to 
al
ulate the bound state position Ebfrom equation (5.27) and the weights from equation (5.29) employing the renormalisedparameters. We abstain from showing expli
it plots here, but note that the results resemble�gures 5.2 and 5.3 in the respe
t that they give good agreement in the singlet regime, butdeviations for parameters where the ground state is a doublet.In the following �gure 5.11 (left) we show the dependen
e of the anomalous expe
tationvalue 〈d↑d↓〉 on the asymmetry s
aled by the intera
tion ξd/U for the same value of ∆scas in �gure 5.10. The values for 〈d↑d↓〉 are s
aled by the gap ∆sc. For the values of Ushown, at half �lling the system has a doublet ground state and 〈d↑d↓〉 is negative. Firstit does not vary mu
h when ξd is in
reased, but at the transition to the singlet groundstate we �nd, as in the half �lled 
ase, a jump to a positive value and 〈d↑d↓〉 in
reases toa saturation value on further in
reasing ξd. This value is smaller for larger U , similar towhat has been found in the symmetri
 
ase.
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Figure 5.11: Left: Anomalous expe
tation values for various U/πΓ and ∆sc = 0.01. Right:Phase diagram showing the regions for singlet and doublet ground state as dependent on
Γ/U and ξd/U for di�erent values of the gap ∆sc. The full semi
ir
ular line 
orrespondsto the phase boundary for ∆sc = ∞ as dis
ussed in equation (5.33).On the right hand side of �gure 5.11 we present a global phase diagram of parameterregimes for singlet and doublet ground states for the non-symmetri
 
ase. This representa-tion in the Γ/U -ξd/U -plane is motivated by the result for the phase boundary for the 
ase
∆sc → ∞ derived in equation (5.33). The 
orresponding semi
ir
le is shown in the �gurea

ompanied by the phase boundaries for �nite values of the gap ∆sc. Note that the lineon the x-axis, to whi
h the phase boundary is be 
ontra
ted in the limit Γ → 0 or U → ∞,possess a doublet ground state for |ξd| /U < 1/2.In summary, we have dis
ussed the behaviour of an intera
ting impurity site in amedium with symmetry breaking in the 
harge 
hannel. This situation is motivated by thesituation of magneti
 impurities in super
ondu
tors and nanos
ale quantum dot systemswith super
ondu
ting leads. As an additional parameter, the magnitude of the gap ∆scenters the problem. The low energy spe
trum is dominated by the gap, and we saw thatthe lowest ex
itations in these 
ases are Andreev bound states within the gap region,whi
h 
hange position and weight a

ording to the other parameters. These have beenanalysed in detail in both the symmetri
 and the asymmetri
 model. We have shown thata renormalised parameter des
ription for the position of the weights of the bound states ispossible. We have presented spe
tral fun
tions for both the low energy regime and the fullfrequen
y range. The behaviour of the ground state, whi
h 
an be a singlet or doublet, issummarised in the two phase diagrams in �gures 5.4 and 5.11.
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Chapter 6The Hubbard model in magneti
 �eld
Everything should be as simple as itis, but not simpler. Albert Einstein

In the third part of this thesis we study 
orrelated ele
trons in the latti
e model subje
tto a 
ertain symmetry breaking. In this 
hapter we des
ribe the response of the intera
t-ing ele
trons to a homogeneous magneti
 �eld. We �rst brie�y des
ribe the DMFT-NRGformalism with magneti
 symmetry breaking and explain how the �eld dependent renor-malised parameter and RPT des
ription from 
hapter 3 
an be generalised. Then wepresent results for di�erent parameter regimes at half �lling and away from half �lling.6.1 Magneti
 states in the Hubbard modelThe Hubbard model (1.29) had originally been proposed to study magneti
 ordering andferromagnetism, based on an a mi
ros
opi
 theory of itinerant 
orrelated ele
trons. Mean�eld theory, indeed, predi
ts spontaneous magneti
 order in the Hubbard model when theStoner 
riterion
ρ0(εF)U > 1 (6.1)is satis�ed. More 
areful studies have revealed, however, that it is not so easy to �nd a ferro-magneti
 ground state in the Hubbard model and 
orresponding region of the parameters inthe phase diagram is not so large (Kotliar and Ru
kenstein 1986, von der Linden and Edwards1991) [for a review see Tasaki (1995)℄. The 
riterion (6.1) although not a

urate gives theright tenden
y for the onset of magnetism, i.e. large U and large density of states at theFermi level. A rigorous result for ferromagneti
 ordering by Nagaoka (1966) for in�nite Uand one hole exist, but it has not been easy to extend this result (von der Linden and Edwards1991). A more re
ent DMFT study found ferromagnetism for very large U and moder-ate doping (Zitzler et al. 2002). It has also be found in �at band models with an in�nitedensity of states (Mielke 1993). One reason that ferromagnetism is not found for an or-dinary DOS and at smaller values U , say of order of the bandwidth, is that the tenden
yto antiferromagneti
 ordering by the indu
ed by the inter-site spin 
oupling J , (1.31), isdominant. Antiferromagneti
 ordering is dis
ussed in the next 
hapter.



104 The Hubbard model in magneti
 �eldIn this 
hapter, rather than studying spontaneous ferromagneti
 ordering we want tofo
us on the paramagneti
 response of the 
orrelated latti
e ele
trons towards an externalmagneti
 �eld. We have seen for the impurity model in se
tion 3.2 that the sus
eptibilitytowards the exposure to a magneti
 �eld in
reases with the degree of 
orrelation and similare�e
ts will be found here. We also saw there that the 
orresponding quasiparti
le behaviour
ould be 
hara
terised in terms of �eld dependent renormalised parameters. In this se
tionwe want to extend these methods to the study of the e�e
t of a magneti
 �eld on the latti
esystem of 
orrelated ele
trons. We will �nd quite distin
t behaviour depending on the on-site intera
tion U . The extreme limits 
an easily be understood without any 
al
ulation.In the non-intera
ting limit, we deal with a free Fermi gas and only have to 
onsider the
ompetition of the magneti
 �eld energy of order h with the kineti
 energy whi
h is of orderof the hopping t. The system therefore only shows a strong polarisation when h & t, whi
h- as t is of the order of ele
tron volts - in pra
ti
e is a very large �eld. In the limit of verystrong lo
al intera
tion, U → ∞, the situation is 
ompletely di�erent. In the half �lled
ase every site is singly o

upied and thus possess a lo
al moment as 
harge �u
tuationsare 
ompletely frozen. These un
oupled spins, polarise 
ompletely even for a very small�eld and thus the sus
eptibility of the system diverges in the zero temperature limit (Curielaw). The intermediate regime between these extreme limits is more interesting, but needsa more 
areful 
onsideration, whi
h is 
arried out here in the DMFT framework.To study the Hubbard model with an indu
ed magneti
 symmetry breaking is notonly of interest for theoreti
al reasons. A number of materials, su
h as heavy fermions,vanadium oxide, liquid 3He 
an be understood as a strongly 
orrelated Fermi liquid andtheir response to a magneti
 �eld has been investigated in great detail. For instan
e,phenomena like �eld and spin dependent e�e
tive masses and metamagneti
 behaviourhave been observed experimentally in several heavy fermion 
ompounds (Aoki et al. 1993,Goodri
h et al. 1999, Manekar et al. 2000, Dordevi
 et al. 2006). The Hubbard model,however, being a one band model is not an appropriate starting point to make a quanti-tative 
omparison with the heavy fermion 
lass of materials. A periodi
 Anderson modelwith a two band stru
ture and in
luding the degenera
y of the f ele
trons would be a bettermodel to des
ribe these materials. Field dependent e�e
ts in this model have been studiedby several te
hniques, modi�ed perturbation theory (Meyer and Nolting 2001), exa
t di-agonalisation (Saso and Itoh 1996), 1/N expansion (Ono 1998) and variational approa
h(Edwards and Green 1997).6.2 Setup for the DMFT with a magneti
 �eld symmetrybreakingWe 
onsider the Hubbard model (1.29) in a magneti
 �eld,
H = −

∑

i,j,σ

(tijc
†
i,σcj,σ + h.c.) −

∑

iσ

µσniσ + U
∑

i

ni,↑ni,↓, (6.2)



6.2 Setup for the DMFT with a magneti
 �eld symmetry breaking 105where µσ = µ + σh with the �eld h as introdu
ed earlier and the 
hemi
al potential
µ. We will treat (6.2) in the DMFT approximation and due to the symmetry breakingterm all relevant quantities introdu
ed in se
tion 2.3 now be
ome spin dependent. Thegeneralisation of the equations in se
tion 2.3 is, however, 
ompletely straightforward. Thee�e
tive Weiss �eld G−1

0,σ(τ) 
arries a spin index, and equation (2.71) generalises to twoequations for ea
h spin 
omponent,
G−1

0,σ(ω) = Gloc
σ (ω)−1 + Σσ(ω), (6.3)whi
h form the two self-
onsisten
y equations for the approa
h. On
e the spin dependentself-energy Σσ(ω) is obtained in the e�e
tive impurity problem the lo
al latti
e Green'sfun
tion Gloc

σ (ω) 
an be 
al
ulated from
Gloc

σ (ω) =
∑

k

Gk,σ(ω) =

∫

dε
ρ0(ε)

ω + µσ − Σσ(ω) − ε
, (6.4)where ρ0(ε) is the density of states for the non-intera
ting model (U = 0). Gloc

σ (ω) 
an beidenti�ed with the Green's fun
tion Gσ(ω) of an e�e
tive AIM, by re-expressing G−1
0,σ(ω)as

G−1
0,σ(ω) = ω + µσ −Kσ(ω), (6.5)su
h that

Gσ(ω) =
1

ω − εd,σ −Kσ(ω) − Σσ(ω)
, (6.6)with εd,σ = −µσ. The dynami
al mean �eld Kσ(ω), des
ribing the e�e
tive mediumsurrounding the impurity, is also spin dependent now. As illustrated in se
tion 2.3 quitegenerally, starting from an initial form for Kσ(ω), Σσ(ω) is 
al
ulated using an appropriateimpurity solver from whi
h Gloc

σ (ω) 
an be 
al
ulated using equation (6.4). A new resultfor Kσ(ω) is then obtained from equations (6.3) and (6.5). This Kσ(ω) serves as an inputfor the e�e
tive impurity problem and the pro
ess is repeated until it 
onverges to give aself-
onsistent solution. As impurity solver we use the NRG in this thesis, whi
h is mosta

urate for 
al
ulations at T = 0 and for the low energy ex
itations. There has been aDMFT study of the stati
 properties of a half-�lled Hubbard model in a magneti
 �eldusing the exa
t diagonalisation (ED) method by Laloux et al. (1994).The density of states ρ0(ε) of the non-intera
ting in�nite dimensional model here is
hosen as the semi-ellipti
al form 
orresponding to a Bethe latti
e (2.75)
ρ0(ε) =

2

πD2

√

D2 − (ε+ µ0)2 (6.7)where 2D is the band width, with D = 2t for the Hubbard model, and µ0 the 
hemi
alpotential of the free ele
trons. We 
hoose this form, rather than the Gaussian density ofstates of the hyper
ubi
 latti
e, as it has a de�nite �nite bandwidth.Before 
onsidering in detail the methods of solving these equations, we look at the formof these equations in the low energy regime, where we 
an give them an interpretation in
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 �eldterms of renormalised quasiparti
les. We assume that we 
an expand Σσ(ω) in powers of
ω for small ω, and retain terms to �rst order in ω only. Substituting this expansion intothe equation for the lo
al Green's fun
tion gives

Gloc
σ (ω) = zσ

∫

dε
ρ0(ε/zσ)

ω + µ̃0,σ + O(ω2) − ε
, (6.8)where

µ̃0,σ = zσ(µσ − Σσ(0)), and zσ = 1/[1 − Σ′
σ(0)]. (6.9)We have assumed the Luttinger result that the imaginary part of the self-energy vanishesat ω = 0 (Luttinger 1961). As the Green's fun
tion in equation (6.8) has the same form ofthat of the non-intera
ting system, apart from the weight fa
tor zσ, we 
an use it to de�nea free quasiparti
le propagator, G̃loc

0,σ(ω),
G̃loc

0,σ(ω) =

∫

dε
ρ0(ε/zσ)

ω + µ̃0,σ − ε
. (6.10)We then interpret zσ as the quasiparti
le weight. We will refer to ρ̃0,σ(ω) derived fromthis Green's fun
tion via ρ̃0,σ(ω) = −ImG̃0,σ(ω + iδ)/π as the free quasiparti
le density ofstates (DOS). For the Bethe latti
e (6.7), the quasiparti
le DOS takes the form of a bandwith renormalised parameters,

ρ̃0,σ(ω) =
2

πD̃2
σ

√

D̃2
σ − (ω + µ̃0,σ)2. (6.11)where D̃σ = zσD. We 
an also de�ne a quasiparti
le o

upation number ñ0

σ by integratingthis density of states up to the Fermi level,
ñ0

σ =

0
∫

−∞

dω ρ̃0,σ(ω). (6.12)It is possible to relate this free quasiparti
le o

upation number ñ0
σ to the expe
tation valueof the o

upation number nσ in the intera
ting system at T = 0. Using the quasiparti
ledensity of states in equation (6.11), we 
an rewrite equation (6.12) as

ñ0
σ =

∞
∫

−∞

dε ρ0(ε)θ(µσ − Σσ(0) − ε), (6.13)where ρ0(ε) as given in equation (6.7). Then assuming a generalisation of Luttinger'stheorem (Luttinger 1960) for ea
h spin 
omponent, the right-hand side of equation (6.13)is equal to nσ. We then have the result,
ñ0

σ = nσ, (6.14)
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 �eld symmetry breaking 107that the o

upation for ele
trons of spin σ is equal to the number of free quasiparti
leof spin σ, as 
al
ulated from equation (6.12). It should be noted that there is no simplegeneralisation of the h = 0 DMFT result (Koller et al. 2005), µ0 = µ − Σ(0), in thespin polarised 
ase to µ0,σ = µ0 + σh = µσ − Σσ(0). The latter would imply the sameo

upation number for ea
h spin spe
ies of free ele
trons and intera
ting ele
trons in amagneti
 �eld, and thus identi
al magnetisation. Sin
e, however, non-intera
ting ele
tronsare less sus
eptible to a magneti
 �eld, this is obviously wrong.To evaluate the renormalised parameters, zσ and µ0,σ, whi
h spe
ify the form of thequasiparti
le DOS, we use two di�erent methods. The �rst method is a dire
t one, wherewe use the NRG determined self-energy Σσ(ω) and the 
hemi
al potential µσ, and thensubstitute into equation (6.9) for zσ and µ̃0,σ. The se
ond method is indire
t, and makes noreferen
e to the self-energy. It is based on the quasiparti
le interpretation of the NRG lowenergy �xed point of the e�e
tive impurity. It is analogous to what has been done for theimpurity model in 
hapter 3, and the details are given in appendix B. In su
h an approa
hwe have Kσ(ω) = |Vσ|2g0,σ(ω), where g0,σ(ω) is the one-ele
tron Green's fun
tion for the�rst site of the isolated 
ondu
tion ele
tron 
hain. As earlier, we expand the self-energy
Σσ(ω) to �rst order in ω, and then substitute the result into equation (6.6). We 
an de�nea free quasiparti
le propagator, G̃0,σ(ω), for the impurity site as

G̃0,σ(ω) =
1

ω − ε̃d,σ − |Ṽσ|2g0,σ(ω)
, (6.15)where

ε̃d,σ = zσ(εd,σ + Σσ(0)), |Ṽσ|2 = zσ|Vσ|2, (6.16)In the DMFT approa
h we identify G̃0,σ(ω) with the lo
al quasiparti
le Green's fun
tionfor the latti
e (6.10),
G̃loc

0,σ(ω) = G̃0,σ(ω), (6.17)whi
h spe
i�es the form of g0,σ(ω) in (6.15) and yields µ̃0,σ = −ε̃d,σ. The quasiparti
leweight zσ is then obtained from the relation zσ = |Ṽσ/Vσ |2 in equation (6.16), and µ̃0,σfrom µ̃0,σ = −ε̃d,σ.As an extension of the RPT 
onsiderations in 
hapter 3 we 
an also 
al
ulate the lo
aldynami
 spin sus
eptibilities, χloc(ω) =
∑

k χ(ω,k). We fo
us on the transverse part χt(ω)for this model, whi
h 
an be also obtained from a similar equation to (3.36). The details aredes
ribed in Bauer and Hewson (2007b). We 
an 
al
ulate the lo
al on-site quasiparti
leintera
tion Ũ as in the impurity 
ase, but we do not have the simple formula relating Ũ to
χt(0) that enabled us to dedu
e the irredu
ible quasiparti
le intera
tions Ũt; the impurityformula we used earlier is only valid in the wide band limit. To determine Ũt in the latti
e
ase we use the 
ondition that Reχt(ω) �ts the NRG result at the single point ω = 0. We
an then 
ompare the results based on these RPT formulae, whi
h take into a

ount therepeated quasiparti
le s
attering, with the NRG results over the whole frequen
y range.An analogous pro
edure applies for χl(ω) (Bauer and Hewson 2007b).
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 �eld6.3 Results at Half-�llingWe present results at half-�lling for three main parameters regimes where we �nd qual-itatively di�erent behaviour (Laloux et al. 1994). The results in all 
ases will be for aBethe latti
e with a band width W = 2D = 4, su
h that t = 1 sets the energy s
ale. In
on
entrating on the �eld indu
ed polarisation, we do not in
lude the possibility of anti-ferromagneti
 ordering. The regimes are a relatively weak 
oupling regime (a) where Uis smaller than the band width, an intermediate 
oupling regime (b) with W < U < Uc,where Uc is the value at whi
h a Mott-Hubbard gap develops in the absen
e of a magneti
�eld [Uc ≈ 5.88, Bulla (1999)℄, and (
) a strong 
oupling regime with U > Uc.6.3.1 Weakly 
orrelated regimeThe �rst plot in �gure 6.1 (left) gives the spe
tral densities for the majority spin ele
trons
ρ↑(ω) for various magneti
 �eld values in the weakly 
orrelated regime, U = 2.
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2 m(h)Figure 6.1: Left: The lo
al spe
tral density for the majority spin ρ↑(ω) for U = 2 andvarious �elds h. Right: The inverse of the quasiparti
le weight zσ(h) 
al
ulated from theimpurity �xed point (FP) and dire
tly from the self-energy and the magnetisation m(h)also for U = 2.We 
an see 
learly that, for in
reasing magneti
 �eld, more and more spe
tral weight isshifted to lower energies (the opposite happens for the other spin 
omponent, whi
h isnot displayed here). Above h ≃ 1.0 the system is 
ompletely polarised, 2m = 1. Thisextreme high �eld limit 
orresponds to an insulator; there is a gap of the magnitude
∆g(h) = 2h + U − W between the upper (minority) and lower (majority) band, whi
hboth have the semi-ellipti
al form as for the non-intera
ting system with W = 4, as 
an beseen already in 6.1 (left) for h = 0.9. The inverse of the quasiparti
le weight zσ(h), whi
hin the DMFT 
orresponds to the enhan
ement of the e�e
tive mass m∗

σ(h) = m/zσ(h),is shown as a fun
tion of h in �gure 6.1 (right). We 
al
ulated the values of zσ(h) usingthe two methods des
ribed earlier, i.e. dire
tly from the numeri
al derivative of the NRGself-energy at ω = 0 and from the impurity �xed point (FP) (see appendix B), where
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zσ = |Ṽσ/Vσ |2. At half �lling we have z↑(h) = z↓(h) and we have plotted the average ofthe values for σ = ↑ and σ = ↓, whi
h is 
ompared for the two methods. The deviation forthe values for the di�erent spins is only due to small numeri
ally ina

ura
ies and is lessthan 2%. The method based on analysing the ex
itation of the impurity �xed point (FP)is only appli
able in the metalli
 regime, when the system is not 
ompletely polarised.The values of zσ(h) in
rease from about 0.75 to 1, whi
h 
orresponds to a progressive�de-renormalisation� of the quasiparti
les with in
reasing �eld, as observed earlier for theimpurity model in se
tion 3.2. Sin
e the intera
tion term in the Hubbard model a
ts onlyfor opposite spins it is 
lear that there is no renormalisation when the system is 
ompletelypolarised with one band fully o

upied and the other empty. We have also 
al
ulated, butdo not display the expe
tation value of the double o

upan
y 〈n↑n↓〉. It is found that itde
reases with in
reasing �eld, whi
h further illustrates why the intera
tion term be
omesless important for larger �elds.
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MFFigure 6.2: Left: The renormalised 
hemi
al potential µ̃0,σ(h) 
al
ulated from the impurity�xed point (FP) and dire
tly from the self-energy for U = 2 and various �elds h. Right:The magnetisation in the mean �eld approximation 
ompared with the DMFT result for

U = 2 and for the full range of magneti
 �elds h.We 
an also follow the �eld dependen
e of the renormalised 
hemi
al potential µ̃0,σ(h)as shown in �gure 6.2 (left). It is shown dedu
ed from the renormalised parameter (RP)
ε̃d,σ and as 
al
ulated dire
tly from the self-energy. The agreement is very good over thefull range of magneti
 �elds. Mean �eld theory is valid for very weak intera
tions, so we
ompare our results for µ̃0,σ(h) for U = 2, with the mean �eld value µ̃mf

0,σ = µ+σh−Unmf
−σin �gure 6.2 (left). The results 
oin
ide for h = 0, when µ̃mf

0,σ = 0 and when the systembe
omes fully polarised at large �eld values, µ̃mf
0,σ = −σ(U/2 + h), but in general µ̃mf

0,σ >

µ̃0,σ(h). We also 
ompare the mean �eld (MF) result for the �eld dependen
e of themagnetisation m(h) with the one obtained in the DMFT 
al
ulation in �gure 6.2 (right).The general behaviour is similar, but the mean �eld theory without quantum �u
tuationsoverestimates the magnetisation, as one would expe
t.
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 �eld6.3.2 Intermediate 
oupling regimeIn the next plot in �gure 6.3 (left), where U = 5, we show typi
al behaviour of the majorityspin density of states in the intermediate 
oupling regime.
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Figure 6.3: Left: The lo
al spe
tral density for the majority spin ρ↑(ω) for U = 5 andvarious �elds h. Right: The inverse of the quasiparti
le weight zσ(h) 
al
ulated from theimpurity �xed point (FP) and dire
tly from the self-energy also for U = 5. The inset showsthe magnetisation m(h).Similar to the weak 
oupling regime, we �nd a shift of spe
tral weight towards lower energyfor the majority spin. There is, however, a di�eren
e in the way this happens due to theinitial three peak stru
ture, namely the quasiparti
le peak in the middle gets narrower forin
reasing �eld and �nally vanishes in the polarised phase. This gives rise to metamagneti
behaviour in this parameter regime. The quasiparti
le weight, whi
h is shown in �gure 6.3(right), re�e
ts this behaviour by de
reasing to zero with in
reasing �eld signalling heavyquasiparti
les. Here, as in the weak 
oupling 
ase, we plot the average of the spin up anddown results for ea
h method. The deviations 
an be larger here, espe
ially 
lose to themetamagneti
 transition. When the material is polarised the zσ(h) reverts to 1, whi
h
orresponds to the band insulator as before. This approa
h to the fully polarised lo
alisedstate in high �elds 
ontrasts with that found in the weak 
oupling regime.To illustrate further this di�erent response to a magneti
 �eld, the real part of the lo
allongitudinal dynami
 spin sus
eptibility χl(ω, h) as a fun
tion of ω is shown for variousvalues of h in �gure 6.4 (left). It 
an be seen that the lo
al sus
eptibility χloc(h) =

Reχl(0, h) in this regime in
reases with h so that ∂χloc(h)/∂h > 0. Su
h a feature 
analso be seen in the 
urvature of the magnetisation shown in the inset of �gure 6.3 (right).This is behaviour 
hara
teristi
 of a metamagneti
 transition and related to the magneti
�eld indu
ed metal-insulator transition.We 
an also 
he
k the Luttinger theorem in a magneti
 �eld (6.14), as dis
ussed in theprevious se
tion, by 
omparing the values of ñ0
σ, dedu
ed from integrating the quasiparti
ledensity of states with the value of nσ 
al
ulated from the dire
t NRG evaluation in the
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Figure 6.4: Left: The real part of the lo
al longitudinal dynami
 spin sus
eptibility for
U = 5 and various �elds h. Right: The 
omparison of the spin dependent o

upationnumbers ñ0

σ and nσ 
orresponding to Luttinger's theorem in a magneti
 �eld (6.14) alsofor U = 5.ground state. These results are shown in �gure 6.4 (right). It 
an be seen that there isex
ellent agreement between the results of these two di�erent 
al
ulations, ñ0
σ = nσ, sothat Luttinger's theorem is satis�ed for all values of the magneti
 �eld in this intermediate
oupling regime.Having dedu
ed the renormalised parameters of the quasiparti
les from the NRG re-sults, we are now in a position to test how well we 
an des
ribe the low energy dynami
sof this model in a magneti
 �eld in terms of a renormalised perturbation theory. It is ofinterest �rst of all to see how the free quasiparti
le density of states ρ̃0,σ(ω) from equation(6.11) multiplied by zσ(h) 
ompares with the low energy spe
tral density ρσ(ω). In �gure6.5 we make a 
omparison in the zero magneti
 �eld 
ase for U = 5.We see that the quasiparti
le band gives a good representation of the low energy peak in

ρσ(ω) and, as expe
ted, does not reprodu
e the high energy features. These, however, toa fair approximation 
an be des
ribed by the mean �eld solution ρmf(ω) weighted with afa
tor 1−zσ as 
an be seen in �gure 6.5 (left). A 
ase with a �nite magneti
 �eld h = 0.15,where the peaks in the density of states of the two spin spe
ies are shifted due to theindu
ed polarisation relative to the Fermi level, is shown in �gure 6.5 (right). The �gurefo
uses on the region at the Fermi level and one 
an see the the free quasiparti
le densityof states des
ribes well the form of ρσ(ω) in the immediate vi
inity of the Fermi level.It is to be expe
ted that the frequen
y range for this agreement 
an be extended if self-energy 
orre
tions are in
luded in the quasiparti
le density of states using the renormalisedperturbation theory as shown in 
hapter 3 in the impurity 
ase.We now 
ompare the NRG results for the transverse lo
al dynami
 spin sus
eptibilitiesfor the same value U = 5 and a similar range of magneti
 �eld values with those based onthe RPT formula as explained at the end of se
tion 6.2. In �gure 6.6 we show the imaginary



112 The Hubbard model in magneti
 �eld

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ω

 

 
~

~

z↓ρ
0,↓(ω)

z↑ρ
0,↑(ω)

ρ↓(ω)

ρ↑(ω)

−0.4 −0.2 0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ω

 

 ~

~

z↓ρ
0,↓(ω)

z↑ρ
0,↑(ω)

ρ↓(ω)

ρ↑(ω)

Figure 6.5: Left: The free quasiparti
le density of states ρ̃0,σ(ω) in 
omparison with in-tera
ting lo
al spe
tral density for U = 5 and h = 0. We have also plotted a thin bla
kline for ρmf(ω) = [ρ0(ω + U/2) + ρ0(ω − U/2)]/2 whi
h des
ribes the non-magneti
 mean�eld solution and weighted with 1 − zσ. Right: The free quasiparti
le density of states in
omparison with intera
ting the lo
al spe
tral density for U = 5 and h = 0.15.part of the transverse spin sus
eptibility 
al
ulated with the two di�erent methods.
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omparison of the imaginary parts of the transverse dynami
 spin sus
ep-tibility for U = 5 and h = 0.0 (left) and h = 0.15 (right) 
al
ulated using renormalisedperturbation theory (RPT, full line) and from a dire
t NRG 
al
ulation (dashed line).It 
an be seen that the RPT formula gives the overall form of the NRG results, and pre
isely�ts the gradient of the NRG 
urve at ω = 0. Some of the relatively small di�eren
es betweenthe results might be attributed to the broadening fa
tor used in the NRG results whi
hgives a slower fall o� with ω in the higher frequen
y range, and a slightly redu
ed peak.We get similar good agreement between the two sets of results for the same quantity forthe 
ase with a magneti
 �eld h = 0.15, shown in �gure 6.6 (right).In �gure 6.7, where we give both the real and imaginary parts of the transverse sus-
eptibility for h = 0.19, we see that this overall agreement is maintained in the large �eld



6.3 Results at Half-�lling 113regime where we get metamagneti
 behaviour. The shapes of the low energy peaks for bothquantities are well reprodu
ed by the RPT formulae. Note that the peak in the real part isnot at ω = 0, so it is not �xed by the 
ondition that determines Ũt, but nevertheless is ingood agreement with the NRG results. Due to their very small values it be
omes di�
ultto 
al
ulate zσ(h) as the system approa
hes lo
alisation for larger �elds. In this regime as
zσ(h) → 0 the free quasiparti
le density of states will 
onverge to a delta-fun
tion. Self-energy 
orre
tions to the free quasiparti
le propagators will be
ome in
reasing importantas this limit is approa
hed. On
e the system has lo
alised and is 
ompletely polarised,however, we �nd that the values µ̃σ (zσ(h) = 1) dedu
ed from the self-energy give a quasi-parti
le density of states 
oin
iding with the DMFT-NRG result of an upper and lowersemi-
ir
ular bands.6.3.3 Strong 
oupling regimeFinally we 
onsider the strong 
oupling regime with U > Uc, where for h = 0 the spe
traldensity has a Mott-Hubbard gap so that for half-�lling the system is an insulator [seedashed line in �g. 6.7 (right)℄. The ele
trons will be lo
alised with free magneti
 moments
oupled by an e�e
tive antiferromagneti
 ex
hange J ∼ t2/U as in (1.31). In �elds su
hthat h > J , the system polarises 
ompletely as 
an be seen in �gure 6.7 (right), where weshow the total density of states ρ(ω) = ρ↑(ω) + ρ↓(ω) for h = 0 and h = 0.2.
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Figure 6.7: Left: Plots of the imaginary part of the transverse dynami
 spin sus
eptibilityfor U = 5 and h = 0.19. Right: The total lo
al spe
tral density ρ(ω) for U = 6 for h = 0(dashed line), Mott insulator, and h = 0.2 (full line), fully polarised band insulator.For smaller �elds, su
h that h < J , we do not �nd a 
onvergent solution to the DMFTequations, and the iterations os
illate between lo
al states whi
h are either 
ompletely fullor empty. We interpret this as due to the tenden
y to antiferromagneti
 order whi
h in aweak �eld, due to the absen
e of anisotropy, will be almost perpendi
ular to the applied�eld in the x-y plane with a slight 
anting of the spins in the z-dire
tion (spin �opped
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 �eldphase). In this 
al
ulation no allowan
e has been made for this type of ordering, but thisstate 
an be well des
ribed using an e�e
tive Heisenberg model for the lo
alised moments.6.4 Results away from half �lling6.4.1 Quarter Filled CaseWe now 
ompare the results in the intermediate 
oupling regime with U = 5 at half-�llingwith those at quarter �lling, x = 0.5, where the Fermi level falls in the lower Hubbard peakin the spe
tral density. To see how the band 
hanges with in
reasing magneti
 �eld weplot the density of states for both spin types in �gure 6.8, for the majority spin ele
trons(left) and for the minority spin ele
trons (right), for various values of the magneti
 �eld.
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Figure 6.8: The lo
al spe
tral density for the majority spin ρ↑(ω) (left) and for the minorityspin ρ↓(ω) (right) for U = 5, x = 0.5 and various �elds h. The dotted verti
al line marksthe position of the Fermi level.In the majority spin 
ase (left) the lower peak gains spe
tral weight on the low energyside and the weight in the upper peaks de
reases with in
rease of the �eld. The oppositefeatures 
an be seen in the minority spin 
ase (right), with the spe
tral weight in the lowerpeak below the Fermi level de
reasing and the weight in the upper peak in
reasing. Thusthe in
rease of spe
tral weight below the Fermi level for the majority spin ele
trons, andthe de
rease for the minority spin ele
trons, 
an be seen to be due to a 
hange of bandshape rather than a simple relative shift of the two bands, whi
h would be the 
ase inmean �eld theory. In the fully polarised state there are no minority states below the Fermilevel and the upper peak in the majority state density of states has disappeared. Notethat the magneti
 �eld ne
essary for polarisation hpol is more than twi
e as large this 
ase,
hpol ≃ 0.4, as in the half �lled 
ase, where hpol ≃ 0.2.The 
orresponding values for the inverse of the quasiparti
le weight 1/zσ(h) are shownin �gure 6.9 (left) for a range of �elds.As noted in the impurity 
ase, the quasiparti
le weights di�er for the two spin types with
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Figure 6.9: The inverse of the quasiparti
le weight zσ(h) 
al
ulated from the impurity�xed point (FP) and dire
tly from the self-energy for U = 5, x = 0.5 (left) and for U = 6,
x = 0.95 (right) for various �elds h. The magnetisation m(h) is also displayed.
z↑(h) > z↓(h). The values of zσ(h) have been 
al
ulated, as des
ribed earlier, both fromthe energy levels (RP) and from a numeri
al derivative of the NRG derived self-energy.There is reasonable agreement between the two sets of results, and the small di�eren
esto be seen be attributed to the un
ertainty due to the broadening in the numeri
al deriva-tive of the NRG self-energy. As in the impurity 
ase without parti
le hole symmetry(Bauer and Hewson 2007a), there is an initial de
rease of z↓(h) with in
rease of h, whereas
z↑(h) in
reases monotoni
ally. Note that z↓(h) does not revert to one in the polarised 
aseas an additional down spin ele
trons just above the Fermi level intera
ts with the other uppolarised ele
trons. This will be seen even more pronoun
ed in the 
ase near half �llingdis
ussed below. The �eld dependen
e of the magnetisation is also shown in �gure 6.9,and is similar to the half-�lled 
ase with a weak intera
tion (U = 2). We have 
al
ulated,but do not show, the 
orresponding o

upation values for ñ0

σ whi
h again agree well withthe values of ñσ, verifying Luttinger's theorem.Our 
on
lusion from these results, and from 
al
ulations with other values of inter-mediate and large U , is that when there is signi�
ant doping, the behaviour in the �eld
orresponds to a weakly 
orrelated Fermi liquid, very similar to that at half-�lling in theweak intera
tion regime. The only remarkable di�eren
e in the �eld is the spin dependen
eof the e�e
tive masses as shown in �gure 6.9, whi
h is also found similarly in the impurity
ase (Bauer and Hewson 2007a).6.4.2 Near half �llingVery 
lose to half-�lling and for large values of U we have a qualitatively di�erent parameterregime. Here the system is metalli
 but we 
an expe
t strong 
orrelation e�e
ts when Uis of the order or greater than Uc, due to the mu
h redu
ed phase spa
e for quasiparti
les
attering. We look at the 
ase with 5% hole doping from half-�lling and a value U = 6,
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 �eldwhi
h is just greater than the 
riti
al value for the metal-insulator transition. In �gure6.10 we show the spe
tral density of states for both the majority (left) and minority (right)spins states and various values of the magneti
 �eld.
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Figure 6.10: The lo
al spe
tral density for the majority spin ρ↑(ω) (left) and the minorityspin ρ↓(ω) (right) for U = 6, x = 0.95 and various �elds h.There is a 
lear sharp quasiparti
le peak for h = 0 at the Fermi level at the top of thelower Hubbard band. As in the quarter �lling 
ase with U = 5 we see a similar transferof spe
tral weight with in
reasing �eld to below the Fermi level for the majority spin 
ase,and above the Fermi level for the minority spins. For large �elds, h > 0.26, when thesystem is 
ompletely polarised there is still a sharp narrow peak in the spe
tral densityof the minority spin states (right) above the Fermi level, though the spe
trum for themajority states (left) below the Fermi level is that of the non-intera
ting system. A spinup ele
tron added above the Fermi level feels no intera
tion as the system is 
ompletelyspin up polarised so these ele
trons see the non-intera
ting density of states. On the otherhand a spin down ele
tron above the Fermi level intera
ts strongly with the sea of up spinele
trons. The self-energy due to s
attering with parti
le-hole pairs in the sea 
reates adistin
t resonan
e in the down spin density of states just above the Fermi level. Just su
ha resonan
e was predi
ted by Hertz and Edwards (1972) for a Hubbard model in a strongferromagneti
 (fully polarised) state.The �eld dependen
e of the inverse of the quasiparti
le weight is presented in theearlier �gure 6.9 (right). Again we �nd reasonable agreement between the two methodsof 
al
ulation for these quantities. The magnetisation as a fun
tion of h is shown as aninset in the same �gure. The behaviour of z↑(h) and z↓(h) as a fun
tion of h 
ontrastssharply with the behaviour found for the metalli
 state at half-�lling with U = 5 shownin �gure 6.3 (right). Noti
e 
omparing with �gure 6.3 that for zero �eld the quasiparti
leweight has a very similar value in both 
ases. At half-�lling the tenden
y of the magneti
�eld to indu
e lo
alisation resulted in values of z−1
σ (h) (z↑(h) = z↓(h)) whi
h in
reasesharply as a fun
tion of h. In the 5% doped 
ase with U = 6, the system remains metalli
and the inverse quasiparti
les weights, z−1

↑ (h) and z−1
↓ (h), both de
rease in large �elds



6.4 Results away from half �lling 117though their values di�er signi�
antly. The quasiparti
le weight for the minority spinele
trons de
reases initially with in
rease of h, whereas that for the majority spins z↑(h)in
reases monotoni
ally and quite dramati
ally with h. For a �eld h = hpol when thesystem be
omes fully polarised the up spin ele
trons be
ome essentially non-intera
ting,
z↑(hpol) = 1, whereas there is a strong renormalisation for a down spin ele
tron and we�nd in this 
ase z↓(hpol) ≃ 0.15. The interpretation for this is as given in the previousparagraph for the spe
tral densities. For very large �elds, h ≫ hpol, also the minorityrenormalisation fa
tor z↓(h) tends to one.In �gure 6.11 (left) we 
ompare the free quasiparti
le DOS zσρ̃0,σ(ω) with the full one
ρσ(ω) for the fully polarised 
ase (hpol = 0.26) near half �lling, x = 0.95, U = 6. Note thatthe parameters, µ̃0,σ and zσ , used in ρ̃0,σ(ω) are purely derived from the NRG self-energyin this 
ase.
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Figure 6.11: Left: The free quasiparti
le density of states in 
omparison with intera
tinglo
al spe
tral density for U = 6, x = 0.95 and h = 0.26. Right: The real and imaginaryparts of the transverse dynami
 spin sus
eptibility (upper panel) and of the longitudinaldynami
 spin sus
eptibility (lower panel) for U = 6, x = 0.95 and h = 0.15.We 
an see that the di�erent values for the �eld dependent quasiparti
le weight for up anddown spin zσ(h) lead to remarkably di�erent quasiparti
le band shapes. With z↑(hpol) ≃ 1the majority spin quasiparti
le band is essentially that of the non-intera
ting density ofstates. The very mu
h smaller value z↓(hpol) leads to a narrow quasiparti
le band abovethe Fermi level. The low energy �ank of this quasiparti
le band des
ribes well the narrowpeak seen in the spe
tral density just above the Fermi level. To des
ribe these strongasymmetries in the spe
tral densities near half �lling, we need z↑ ≫ z↓, whi
h 
ontrastswith the 
ases at half �lling su
h as in �gures 6.5 (right) where always z↑ = z↓. Thissuggests a dis
ontinuous behaviour of the renormalisation fa
tors zσ as a fun
tion of dopingon the approa
h to half �lling.Also for this 
ase we display results for the real and imaginary part for the transversesus
eptibility for a �eld of h = 0.15, shown in �gure 6.11 (right). The low energy featuresare seen on an ω-s
ale an order of magnitude smaller than that for quarter �lling due to
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 �eldthe mu
h stronger renormalisation e�e
ts in this regime. There is ex
ellent agreement bothwith the peak positions and shapes between the NRG and RPT results for both quanti-ties. More examples of how the dynami
 (transverse and longitudinal part) sus
eptibility
ompares to NRG results 
an be found in referen
e Bauer and Hewson (2007b).We 
on
lude that already a small doping of the system is enough to maintain a metalli

hara
ter even for very strong intera
tion. Although the zero �eld spe
tra of the half �lled
ase for U = 5 and the small doping 
ase with U = 6 display very similar zero �eldbehaviour, i.e. a strongly renormalised quasiparti
le band with similar zσ, no �eld indu
edlo
alisation transition o

urs for �nite doping and no metamagneti
 behaviour is observedin the latter 
ase.To summarise, in this 
hapter we have used the DMFT-NRG method to 
al
ulatethe spe
tral densities for one-parti
le and two-parti
le response fun
tions for the in�nitedimensional Hubbard model in a magneti
 �eld, for the qualitatively di�erent �lling regimesand intera
tion strengths. The results extend earlier 
al
ulations of Laloux et al. (1994)using the ED method, whi
h were restri
ted to the 
ase of half-�lling. The results areon the whole 
onsistent with this earlier work, ex
ept in the insulating regime for weak�elds, where we 
ould not �nd a 
onvergent solution of the DMFT equations. We havealso extended the method for 
al
ulating the �eld dependent quasiparti
le parameters(
hapter 3) to in�nite dimensional latti
e models where the self-energy, as in the impurity
ase, is a fun
tion of frequen
y only. Using the �eld dependent renormalised parameters
zσ(h) and µ̃0,σ(h) in the RPT formulae for the dynami
 transverse spin sus
eptibilities wefound agreement with the overall features to be seen in the DMFT-NRG results for thesequantities. In all metalli
 parameter regimes a spin dependent Luttinger theorem in theform nσ = ñ0

σ, the number of parti
les equals the number of quasiparti
les, was found tobe satis�ed for all strengths of the magneti
 �eld.Well away from half �lling we �nd a magneti
 response similar to the weakly 
orrelated
ase even for large values of U . The large phase spa
e for quasiparti
le s
attering inthis regime leads to modest renormalisation e�e
ts. Here, as in the impurity 
ase, we�nd spin dependent quasiparti
le weights, z↑(h) 6= z↓(h). This implies spin dependentas well as �eld dependent e�e
tive masses, whi
h have been dis
ussed earlier in work bySpaªek and Gopalan (1990), Korbel et al. (1995) and Riseborough (2006). A qualitative
omparison with the results there 
an be found in Bauer and Hewson (2007b).



Chapter 7Renormalised quasiparti
les inmetalli
 Antiferromagnets

Wie si
h Verdienst und Glü
k verketten,Das fällt den Toren niemals ein,Wenn sie den Stein der Weisen hätten,Der Weise mangelte dem Stein.Johann W. von Goethe

In this 
hapter we dis
uss spontaneous antiferromagneti
 order in the Hubbard model.We fo
us on the 
ase away from half �lling. First we dis
uss the general situation and thephase diagram, before explaining the details ne
essary for the DMFT-NRG approa
h. Thisis followed by a detailed analysis of the quasiparti
le parameters, whi
h are obtained withtwo di�erent methods. Finally we dis
uss lo
al and k-resolved spe
tral fun
tions and givea detailed analysis of the renormalised quasiparti
le ex
itations in
luding their e�e
tivemass and spe
tral weight.7.1 Antiferromagneti
 order in the Hubbard modelIn the last se
tion we analysed the behaviour of the Hubbard model subje
t to a homo-geneous magneti
 �eld and we saw qualitatively di�erent responses in 
ertain regimes forthe intera
tion U and the doping δ. We did not �nd a spontaneously broken symmetrystate, i.e. a ferromagneti
 ordered state, in the parameter spa
e under 
onsideration. Amore natural symmetry breaking than the ferromagneti
 ordering for the Hubbard modelis the antiferromagneti
 ground state. The easiest way to see this is to 
onsider large Uand half-�lling, where the model 
an be mapped to a Heisenberg model of antiferromag-neti
ally 
oupled spins on a latti
e. The spin 
oupling term was given in equation (1.31)and the 
oupling 
onstant is J = 4t2/U . With (1.31) as an e�e
tive model we 
an dire
tlysee the antiferromagneti
 ordering tenden
y in the limit of large U . Also for small values ofthe intera
tion, where mean �eld theory is valid, one �nds an antiferromagneti
 solution.In fa
t it is generally a

epted at present that for δ = 0 and �nite U the ground state ofthe Hubbard model with a bipartite latti
e is antiferromagneti
ally ordered. The situation
an be 
ompared with the formally analogous situation in a super
ondu
tor (
f. mappingin se
tion 1.2.2), where any �nite attra
tion leads to an instability of the Fermi sea. We
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les in metalli
 Antiferromagnetswill deal with this situation in more detail in the next 
hapter. An extensive study byZitzler et al. (2002) used the DMFT-NRG method to des
ribe the antiferromagneti
 so-lutions and phase separation in the Hubbard model. The results presented here are inagreement with these earlier predi
tions, but this study has a di�erent emphasis as will beexplained below.Anti
ipating some of the results of this 
hapter we show a global antiferromagneti
/para-magneti
 phase diagram as a fun
tion of the doping δ and the on-site intera
tion U in �gure7.1. It has been obtained with DMFT-NRG 
al
ulation. The value of the 
orrespondingsublatti
e magnetisation mA is shown in a false 
olour plot. We have added a dashed lineseparating the spontaneously ordered and paramagneti
 regimes.
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Figure 7.1: Left: Phase diagram showing the doping and the U dependen
e of the sublatti
emagnetisation mA as dedu
ed from the DMFT-NRG 
al
ulations. Right: S
hemati
 plotof an antiferromagneti
ally ordered state with a few additional holes.At half �lling (δ = 0 axis) the spontaneous magnetisation in
reases with U . We 
an see thatthe antiferromagneti
 order from the half �lled 
ase persists when holes are added. Thevalue of the 
riti
al doping δc at whi
h the antiferromagnetism disappears depends on theon-site intera
tion U . We expe
t that for small U the 
riti
al doping δc will in
rease with
U sin
e a tenden
y to order only appears when an on-site intera
tion is present. From themapping to the t−J model we also expe
t that for large U the antiferromagneti
 
oupling
J de
reases and therefore the order is destroyed more easily. The values of U are, however,not large enough to display this trend.If we 
ompare these results with the phase diagram given by Zitzler et al. (2002) wesee that they are in very good agreement. In their 
ase the antiferromagneti
 region wasmapped out to values of U ≃ 4.5. A pi
ture illustrating the antiferromagneti
 latti
e in aNéel state (arrows symbolise ele
trons with 
ertain spin dire
tion) and some added holesis shown in �gure 7.1 (right). It is a two-dimensional 5 × 5 
luster with 4 holes, hen
e
δ = 0.16 whi
h 
orresponds to the maximal values we have found for the 
riti
al doping δc.The pi
ture is reminis
ent of numerous numeri
al studies for 
luster of this size with exa
tdiagonalisation and Quantum Monte Carlo (for a review see Dagotto (1994) and referen
es
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h 121therein).Here in this 
hapter, we fo
us on the metalli
 antiferromagnetism, the doped state withlong range antiferromagneti
 order. Our interest is to examine how well the low energyex
itations in this ordered state 
an be des
ribed in terms of renormalised quasiparti
les.Sin
e the motion of a hole in an antiferromagneti
 latti
e is a

ompanied with the gen-eration of spin ex
itations [see s
hemati
 pi
ture in �gure 7.1 (right)℄ its mobility will beinhibited and the e�e
tive mass enhan
ed. Due to a similar e�e
t for 
harge 
arrier 
ou-pling to latti
e phonons with the 
orresponding quasiparti
le ex
itations 
alled polarons,the quasiparti
le ex
itations are sometimes referred to as magneti
 polarons. Here, we willmainly refer to them with the generi
 term of renormalised quasiparti
les. To ta
kle thisproblem of studying the nature of this renormalised quasiparti
le ex
itations in the systemwith spontaneous antiferromagneti
 symmetry breaking, we use the in�nite dimensionalHubbard model and the DMFT-NRG approa
h.7.2 General setup and DMFT approa
hIn 
onsidering the response of the Hubbard model (1.29) to a staggered magneti
 �eldand antiferromagneti
 order, we take the 
ase of a bipartite latti
e, whi
h 
onsists of twosublatti
es A and B su
h that the nearest neighbours of a site in the A sublatti
e are onthe B sublatti
e and vi
e versa. The Hamiltonian for the Hubbard model 
an be writtenin the form,
Hµ = −

∑

i,j,σ

(tijc
†
A,i,σcB,j,σ + h.c.) −

∑

i,σ

(µσc
†
A,i,σcA,i,σ + µ−σc

†
B,i,σcB,i,σ) + U

∑

i,α

nα,i,↑nα,i,↓(7.1)where the hopping matrix element is taken as tij = t between nearest sites i and j only,and zero otherwise, and α = A,B. A staggered �eld H i
s

H i
s =

{

H for i ∈ A sublattice

−H for i ∈ B sublattice
(7.2)has been in
luded so that µσ = µ+ σh. The non-intera
ting part of the Hamiltonian H0,µ
an be diagonalised in terms of Blo
h states and then expressed in the form,

H0,µ =
∑

k,σ

C†
k,σMk,σCk,σ. (7.3)where C†

k,σ = (c†A,k,σ, c
†
B,k,σ), and the matrix Mk,σ is given by

Mk,σ =

(

−µσ εk

εk −µ−σ

)

. (7.4)The k sums run over a redu
ed Brillouin zone as we have doubled the Wigner-Seitz 
ellin position spa
e in
luding two latti
e sites. The free Green's fun
tion matrix G0
k,σ(ω) is
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 Antiferromagnetsgiven by (ω −Mk,σ)−1. The poles of the free Green's fun
tion give the elementary singleparti
le ex
itations, whi
h are given by
E0

k,±(U = 0) = −µ0(h) ±
√

h2 + ε2k, (7.5)where µ0(h) is the 
hemi
al potential of the nonintera
ting system in a staggered �eld.This illustrates that the ele
troni
 ex
itations are split into two sub-bands for a �nitestaggered �eld.Noti
e that we have adopted a spe
ial 
hoi
e of basis {cA,k,σ, cB,k,σ} here (Georges et al.1996, Zitzler et al. 2002). Another 
ommon basis to study antiferromagneti
 and spin den-sity wave symmetry (SDW) breaking is {ck,σ, ck+q0,σ}, where q0 is the re
ipro
al latti
eve
tor for 
ommensurate SDW ordering. The bases 
an be related by a linear transforma-tion,
(

ck,σ

ck+q0,σ

)

=
1√
2

(

1 −1

1 1

)(

cA,k,σ

cB,k,σ

)

. (7.6)For the latter basis the matrix Mk,σ would be diagonal in the kineti
 energy term andthe symmetry breaking is o�diagonal. For our study in the DMFT framework the A−B-sublatti
e basis is, however, more 
onvenient and we will use it throughout the rest of this
hapter. It is possible, of 
ourse, to relate the quantities obtained with the help of (7.6) tothe {ck,σ, ck+q0,σ} basis.We 
an generalise the equations to the intera
ting problem by introdu
ing a self-energy
Σα,k,σ(ω), so that the matrix Green's fun
tion 
an be written in the form

Gk,σ(ω)=
1

ζA,k,σ(ω)ζB,k,σ(ω) − ε2k

(

ζB,k,σ(ω) −εk
−εk ζA,k,σ(ω)

)

, (7.7)where ζα,k,σ(ω) = ω + µσ − Σα,k,σ(ω). As we are dealing with the in�nite dimensionallimit of the model, we take the self-energy to be lo
al so we 
an drop the k index. Thisis the reason why the self-energy has a single site index α = A,B and no o�diagonalterms appear in equation (7.7). The symmetry of the bipartite latti
e gives ΣB,σ(ω) =

ΣA,−σ(ω) ≡ Σ−σ(ω) and hen
e
ζB,−σ(ω) = ζA,σ(ω) ≡ ζσ(ω),where we have simpli�ed the notation. To determine these quantities Σσ(ω) it is su�
ientto fo
us on the A sublatti
e only. Summing the �rst 
omponent in the Green's fun
tion inequation (7.7) over k we obtain the Green's fun
tion for a site on the A sublatti
e, Gloc

σ (ω),
Gloc

σ (ω) =
ζ−σ(ω)

√

ζσ(ω)ζ−σ(ω)

∫

dε
ρ0(ε)

√

ζσ(ω)ζ−σ(ω) − ε
, (7.8)where ρ0(ε) is the density of states of the non-intera
ting system in the absen
e of thestaggered �eld.



7.2 General setup and DMFT approa
h 123In the DMFT this lo
al Green's fun
tion, and the self-energy Σσ(ω), are identi�edwith the 
orresponding quantities for an e�e
tive impurity model. This implies that theGreen's fun
tion G0,σ(ω) for the e�e
tive impurity in the absen
e of an intera
tion at theimpurity site is given by the same self-
onsisten
y equation (6.3) as in the last 
hapter.The iterative s
heme to �nd self-
onsistent solution 
an be 
arried out in the same way asdes
ribed there, we only need to take into a

ount the di�erent form of the lo
al Green'sfun
tion (7.8).To �nd antiferromagneti
 solutions, we 
al
ulated self-
onsistent solutions for a de-
reasing sequen
e of staggered magneti
 �elds to see if broken symmetry solutions of thistype exist as the staggered �eld is redu
ed to zero. For the non-intera
ting density ofstates ρ0(ε) we take the Gaussian form ρ0(ε) = e−(ε/t∗)2/
√
πt∗, 
orresponding to an in�-nite dimensional hyper
ubi
 latti
e. It is useful to de�ne an e�e
tive bandwidth W = 2Dfor this density of states via D, the point at whi
h ρ0(D) = ρ0(0)/e

2, giving D =
√

2t∗
orresponding to the 
hoi
e in referen
e Bulla (1999). In all the results we present herewe take the value W = 4. In the NRG 
al
ulations we have used the improved method ofevaluating the response fun
tions with the 
omplete Anders-S
hiller basis, and also deter-mine the self-energy from a higher order Green's fun
tion. The staggered magneti
 �eldindu
es a sublatti
e magnetisation,
mA =

1

2
(nA,↑ − nA,↓), (7.9)and the spe
tra for both spin 
omponents di�er. For 
ertain parameters, this di�eren
epersists as the staggered �eld is redu
ed to zero so that one has a spontaneous sublatti
emagnetisation 
orresponding to spontaneous antiferromagneti
 order. For the 
ase awayfrom half �lling, δ 6= 0, we have to keep adjusting the 
hemi
al potential when iteratingfor a self-
onsistent solution. It shows a slightly os
illatory behaviour when iterating for aspe
i�
 �lling x, and we follow the pro
edure of stabilising the 
al
ulations by averagingthe e�e
tive medium over a number of iterations as des
ribed in referen
e Zitzler et al.(2002). This feature is related to the fa
t that the 
al
ulations are for a metastableground state and instabilities to more 
ompli
ated ground states for antiferromagneti
ordering than the homogeneous, 
ommensurate Néel state, whi
h forms the basis for theseDMFT 
al
ulations, 
an o

ur (Shraiman and Siggia 1989, Kato et al. 1990, Emery et al.1990, van Dongen 1995, 1996, S
hulz 1990, Freeri
ks and Jarrell 1995, Emery et al. 1999,Zitzler et al. 2002). As far as phase separation in the ground state is 
on
erned, the resultsof our 
al
ulations are generally in line with the 
on
lusions in Zitzler et al. (2002) as theyare 
arried out within the same framework. The fo
us of this work is, however, the analy-sis of generi
 quasiparti
le properties in a doped antiferromagneti
 state. We 
onsider theapproa
h as a valid, approximate starting point for this endeavour, but modi�
ations tothe results presented here 
an o

ur for 
al
ulations based on a more 
ompli
ated groundstates not a

essible within the DMFT framework. For a more extensive dis
ussion of theappli
ability of the DMFT in this situation we refer to the earlier work (Zitzler et al. 2002).
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les in metalli
 Antiferromagnets7.3 Quasiparti
le analysisTo examine the nature of the low energy ex
itations, we will assume that the self-energy
Σσ(ω) is non-singular at ω = 0 so that, at least asymptoti
ally, it 
an be expanded inpowers of ω. This assumption is not expe
ted to be valid 
lose to the quantum 
riti
alpoint when the magneti
 order sets in, but to be a reasonable assumption otherwise. Wealso assume that the imaginary part of the self-energy vanishes whi
h is 
on�rmed by thenumeri
al results of the DMFT-NRG 
al
ulations. We will retain terms to order ω onlyfor the moment. The higher order 
orre
tions will be 
onsidered later. We then �nd for
ζσ(ω),

ζσ(ω) = ω(1 − Σ′
σ(0)) + µσ − Σσ(0) (7.10)

= z−1
σ (ω + µ̃0,σ), (7.11)where

µ̃0,σ = zσ(µ− Σσ(0)), and z−1
σ = 1 − Σ′

σ(0). (7.12)The intera
ting Green's fun
tion (7.7) has poles at the roots of the quadrati
 equation,
ζσ(ω)ζ−σ(ω) − ε2k = 0. (7.13)The solutions of this equation are

E0
k,± = −µ̃±

√

ε̃2
k

+ ∆µ̃2, (7.14)where ε̃k =
√
z↑z↓εk, ∆µ̃ = (µ̃0,↑ − µ̃0,↓)/2, and µ̃ = (µ̃0,↑ + µ̃0,↓)/2. This has thesame form as for the non-intera
ting system in a staggered �eld (7.5), so we 
an interpretthese ex
itations as quasiparti
les 
oupled to an e�e
tive staggered magneti
 �eld h̃s =

∆µ̃/gµB, with µ̃ playing the role of a quasiparti
le 
hemi
al potential. This equationgives the dispersion relation for these single parti
le ex
itations, whi
h 
an be regarded as
onstituting a renormalised band, or bands as there are two bran
hes. The term magneti
polaron is sometimes used to des
ribe these single parti
le ex
itations in states of magneti
order, be
ause of the analogy with the motion of a parti
le in a latti
e to whi
h it is strongly
oupled, where the ex
itation is termed a polaron.The 
orresponding density of states of these free quasiparti
les on the sublatti
e is
ρ̃0,σ(ω)=

1
√
z↑z↓

√

ω + µ̃− σ∆µ̃

ω + µ̃+ σ∆µ̃
ρ0

(

√

(ω + µ̃)2 − ∆µ̃2

√
z↑z↓

)

, (7.15)for |ω + µ̃| > |∆µ̃|, and is zero otherwise. In the 
ase of a half-�lled band µ̃ = 0 and thereis a gap at the Fermi level εF = 0.To determine this quasiparti
le density of states in the presen
e of the symmetry break-ing staggered magneti
 �eld we need to 
al
ulate zσ and µ̃0,σ for ea
h spin type. Using the
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an do this in two ways. As the DMFT-NRG 
al
ulations give us the self-energy
Σσ(ω) dire
tly, we only need its value, and that of its �rst derivative at ω = 0, to dedu
eboth zσ and µ̃0,σ using equation (7.12). However, be
ause the model is solved using ane�e
tive impurity model, we 
an also dedu
e these quantities indire
tly from the many-body energy levels of the impurity on approa
hing the low energy �xed point, as was donein the last 
hapter and is des
ribed in appendix B. This se
ond method gives us not onlya 
he
k on the results of the dire
t method, but also allows to dedu
e some informationabout the quasiparti
le intera
tions Ũ .7.3.1 Quasiparti
le weightWe �rst 
onsider the values of the lo
al quasiparti
le weight fa
tor zσ , 
ommonly knownalso as the wavefun
tion renormalisation fa
tor. This is an important fa
tor in determiningthe parameters needed to des
ribe the low energy behaviour of the system. When thereis no k-dependen
e of the self-energy, as is the 
ase for in�nite dimensional models andDMFT, the e�e
tive mass of the quasiparti
les in the paramagneti
 state is proportional to
1/zσ . We show later that in the antiferromagneti
 state the expression is more 
ompli
atedand depends both on zσ and the renormalised 
hemi
al potential µ̃0,σ. We have determinedthis quantity from the NRG results by the two methods des
ribed and give the values of
zσ dedu
ed for both spin types as a fun
tion of doping in �gure 7.2. The results are forthe 
ase U = 3 (left) and U = 6 (right), where there is antiferromagneti
 order and theexternal staggered �eld has been set to zero.
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Figure 7.2: The quasiparti
le weight zσ as dedu
ed dire
tly from the self-energy and alsofrom the impurity �xed point (FP) for U = 3 (left) and U = 6 (right) for various dopings.It 
an be seen that there is a reasonable agreement between the values obtained by thetwo di�erent methods of 
al
ulation. For the half �lled 
ase δ = 0, the system has a gapand there is no unique value for the Fermi energy. We have in this 
ase taken values zσonly from the derivative of the self-energy at ω = 0. Here due to parti
le-hole symmetry
z↑ = z↓. When the system is doped but still ordered, however, z↑ 6= z↓, and the lo
al



126 Renormalised quasiparti
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 Antiferromagnetsquasiparti
le weights have smaller values espe
ially the minority (down) spin parti
les onthe sublatti
e. This is similar to the results we found for a doped Hubbard model in aparamagneti
 state in the presen
e of a strong uniform magneti
 �eld in the last 
hapter.For 
ertain range of dopings the values of z↑ and z↓ do not vary mu
h. The tenden
y isthat z↓ �rst de
reases and later in
reases, whereas z↑ de
reases over the whole range untilboth of them merge at the doping point where the antiferromagneti
 order disappears. Onthe whole the behaviour for U = 6 is quite similar to that for the 
ase U = 3, only thatthe values of the lo
al quasiparti
le weights are further redu
ed.7.3.2 Renormalised 
hemi
al potentialIn �gure 7.3 we give the results for the renormalised 
hemi
al potential, µ̃0,σ [de�ned inequation (7.12)℄, for the two spin types in the spontaneously ordered antiferromagneti
states for U = 3 (left) and U = 6 (right) for a range of dopings.
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Figure 7.3: The renormalised 
hemi
al potential µ̃0,σ as dedu
ed dire
tly from the self-energy and from the impurity �xed point (FP) for various dopings for U = 3 (left) and
U = 6 (right).The values 
al
ulated by the two di�erent methods 
an be seen to be in good agreementhere, as well. We have added the values for the half �lled 
ase. These were 
al
ulatedfrom the self-energy in the gap at ω = 0. We 
an see that the value for renormalised
hemi
al potential for the majority spin, µ̃0,↑, drops from a �nite value at half �lling tosmall negative value when the system is doped. This 
orresponds to the fa
t that the
hemi
al potential for the hole doped system falls into the lower band and will be seen inmore detail later. The general behaviour of the values for µ̃0,σ for the 
ase with U = 6 isvery similar to the 
ase with smaller U , with again good agreement between the two setsdetermined by the di�erent methods.The renormalised 
hemi
al potential µ̃0,σ is an important parameter in spe
ifying theform of the sublatti
e quasiparti
le spe
tral density ρ̃0

σ(ω). From equation (7.15) it 
an be
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le analysis 127seen that, as ω → −µ̃0,σ, ρ̃0,σ(ω) behaves asymptoti
ally as
ρ̃0,σ(ω) ∼ 1

√

ω + µ̃0,σ

, (7.16)so the quasiparti
le density of states has a square root singularity at ω = −µ̃0,σ. On theother hand, however, as ω → −µ̃0,−σ, ρ̃0,σ(ω) behaves as
ρ̃0,σ(ω) ∼

√

ω + µ̃0,−σ, (7.17)so the quasiparti
le density of states goes to zero at ω = −µ̃0,−σ. Between the two points,
ω = −µ̃0,σ and ω = −µ̃0,−σ, the quasiparti
le density of states has a gap of magnitude
2∆µ̃. As 
an be seen in �gure 7.3 this free quasiparti
le gap de
reases with the doping and
loses in the paramagneti
 state. If we take into a

ount the values at half �lling we seea strong redu
tion of 2∆µ̃, when doping the system. We also see that µ̃0,↑ drops to smallnegative values for �nite hole doping, whi
h 
orresponds to the fa
t that the Fermi levelthen lies within the lower band. These features will be seen 
learly in the �gures presentedin the next se
tion, where we 
ompare the quasiparti
le densities of states with the fulllo
al spe
tral densities 
al
ulated from the DMFT-NRG.7.3.3 The quasiparti
le intera
tionWhen two or more quasiparti
les are ex
ited from the intera
ting ground state, there is anintera
tion between them. For the Anderson impurity model this intera
tion is lo
al and
an be expressed as Ũ , a renormalised value of the original intera
tion of the `bare' parti
les.The value of Ũ 
an be dedu
ed by looking at lowest lying two-parti
le ex
itations derivedfrom NRG 
al
ulation as des
ribed in the appendix B in detail. In �gure 7.4 (left) we givethe values of Ũ↑,↓

pp (N), Ũ↓,↑
hh (N) and Ũ↑,↑

ph (N) as dedu
ed from DMFT-NRG 
al
ulation forthe Hubbard model in an antiferromagneti
 state with U = 6, 10% doping and Λ = 1.8.It 
an be seen that the three sets of results settle down to 
ommon value Ũ .Hen
e, we 
an go further and identify Ũ with the lo
al quasiparti
le 4-vertex intera
tionfor the e�e
tive impurity model as in equation (2.37), where Γ↑,↓,↓,↑(ω1, ω2, ω3, ω4) is thetotal 4-vertex at the impurity site, whi
h is equal to the same quantity for a site in thelatti
e model. With this interpretation it is possible to identify these parameters withthose used in a renormalised perturbation expansion.In �gure 7.4 (right) we plot the doping dependen
e of the renormalised intera
tion overa range of dopings and U = 3 and U = 6. We 
an see that in both 
ases the valuesde
rease with in
reasing doping. Hen
e, the e�e
tive quasiparti
le intera
tion is strongerfor a smaller hole density. For a 
ertain range of dopings Ũ does, however, not vary mu
h.We 
an also see that the ratio Ũ/U for the e�e
tive intera
tion assume smaller values thelarger the bare U be
omes. Also the absolute value of Ũ , i.e. without the s
aling with Uas in �gure 7.4, is smaller for larger bare U for the full range of dopings. We will see in thenext se
tion that the fa
t that for larger bare U the quasiparti
le intera
tions is smallerleads to sharper quasiparti
le peaks in the strong 
oupling 
ase.
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Figure 7.4: Left: The N -dependen
e of the renormalised parti
le-parti
le, parti
le-hole andhole-hole intera
tions for U = 6 and x = 0.9, showing that they 
onverge to a unique value
Ũ . Right: The renormalised quasiparti
le intera
tion Ũ/U as dedu
ed from the impurity�xed point for various dopings and U = 3, 6.7.4 Spe
tra7.4.1 Lo
al Spe
traThe sublatti
e quasiparti
le density of states ρ̃0,σ(ω), evaluated from equation (7.15) withthe renormalised parameters, des
ribes the low energy features seen in the lo
al spe
traldensity ρσ(ω) 
al
ulated from the DMFT-NRG (Bauer and Hewson 2007
). At half �llingthere is a gap at the Fermi level, so there are no single parti
le ex
itations in the immediateneighbourhood of the Fermi level, and this is not a very interesting 
ase to 
onsider. Butfor �nite hole doping the Fermi level lies at the top of the lower band. We look in detailat the 
ase of 10% doping where the Fermi level lies at the top of the lower band, and
onsider the 
ase U = 3. In the upper panel of �gure 7.5 we 
ompare the spe
tral density
ρ↑(ω) with the 
orresponding quantity z↑ρ̃0,↑(ω), from the quasiparti
le density of states.The behaviour near the Fermi level (ω = 0), and the singular feature seen in the lowerbran
h of ρ↑(ω), are well reprodu
ed by the quasiparti
le density of states. Above theFermi level there is a peak in the quasiparti
le density of states similar to that in the fullspe
trum but somewhat more pronoun
ed. Above the Fermi level and below the upperpeak there is a pseudo-gap region. In the free quasiparti
le spe
trum it is a de�nite gap.In the spe
trum 
al
ulated from the dire
t NRG evaluation it appears as a pseudo-gap,with rather small spe
tral weight just above the Fermi level. From the dire
t DMFT-NRG
al
ulations, due to the broadening features introdu
ed to obtain a 
ontinuous spe
trum, itis not always possible to say de�nitively whether there is a true gap above the Fermi levelor not. To resolve this question we 
an appeal to the renormalised perturbation theory tolook at the 
orre
tions to the quasiparti
le density of states arising from the quasiparti
le
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ωFigure 7.5: The free quasiparti
le spe
trum (dashed line) in 
omparison with DMFT-NRGspe
trum for x = 0.9 and U = 3 for the spin-up ele
trons (majority, upper panel) andspin-down ele
trons (minority, lower panel).intera
tions. A 
al
ulation of the imaginary part of the renormalised self-energy Σ̃σ(ω)to order Ũ2 is su�
ient to settle this issue. One �nds that there is a small, but �niteimaginary part of the self-energy in the free quasiparti
le gap 2∆µ̃, when it lies above theFermi level, giving rise to a �nite spe
tral weight there. However, this spe
tral weight isvery small 
lose to the lower edge of the free quasiparti
le density of states, when this edgelies only just above the Fermi level (Bauer and Hewson 2007
).7.4.2 k -resolved Spe
traWe 
an learn more about the low energy single parti
le ex
itations by looking at the spe
traldensity of the Green's fun
tion Gk,σ(ω) in equation (7.7) for a given wave-ve
tor k. Withthe self-energies Σσ(ω) 
al
ulated within the DMFT-NRG approa
h all elements of thismatrix 
an be evaluated. The lo
al spe
tra and self-energies are spin-dependent in thedoped broken symmetry state, however, the free quasiparti
le bands E0
k,± [equation (7.14)℄do not depend on the spin. Here, we fo
us on the diagonal part of Gk,σ(ω) 
orrespondingto the A sublatti
e,

Gk,σ(ω) =
ζ−σ(ω)

ζσ(ω)ζ−σ(ω) − ε2k
. (7.18)The weights of the quasiparti
le ex
itations in this 
ase depend on the spin 
orrespondingto the sublatti
e properties. We note that one 
an also analyse the quasiparti
le bandsdi�erently, for instan
e, from the k-resolved spe
tra and the diagonal form of Gk,σ(ω).The form of the quasiparti
le bands remains un
hanged then, but the weights di�er anddo not depend on the spin σ in that 
ase.We �rst of all look at the Fermi surfa
e whi
h is the lo
us of the k-points at the Fermilevel (ω = 0) where the Green's fun
tion has poles. The 
ondu
tion ele
tron energy εkF

at
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 Antiferromagnetsthese point is given by
ε2kF

= (µ↑ − Σ↑(0))(µ↓ − Σ↓(0)). (7.19)By Luttinger's theorem, the volume of the Fermi surfa
e for the intera
ting system mustequal that of the non-intera
ting system with the same density. As the self-energy dependsonly on ω, the two Fermi surfa
es must also have the same shape, and therefore must beidenti
al. The Fermi surfa
e of the non-intera
ting system is given by εkF
= µ0, where µ0is the 
hemi
al potential of the non-intera
ting system in the absen
e of any applied �eldfor the given density. For this to be identi
al with that given in equation (7.19),

(µ↑ − Σ↑(0))(µ↓ − Σ↓(0)) = µ2
0. (7.20)We 
an 
he
k that this relation indeed holds from our results for Σσ(ω) and µσ, independentof the value of U , or in the 
ase of an applied staggered �eld, independent of the �eld value.This relation implies that the total number of ele
trons per site n 
an be 
al
ulated froman integral over the non-intera
ting density of states,

n = 2

µ0
∫

−∞

ρ0(ω)dω, (7.21)where in the hole doped 
ase µ0 = −√
µ̄↑µ̄↓ and µ̄σ = µσ − Σσ(0).To relate this result to the quasiparti
le pi
ture, we expand the self-energy in equation(7.18) to �rst order in ω, but retain the remainder term. The Green's fun
tion 
an berewritten in the form,

G̃k,σ(ω) =
ζ̃−σ(ω)

ζ̃σ(ω)ζ̃−σ(ω) − ε̃2
k

, (7.22)where ζ̃σ(ω) = ω + µ̃0,σ − Σ̃σ(ω). We de�ne a quasiparti
le Green's fun
tion G̃k,σ(ω)via zσG̃k,σ(ω) = Gk,σ(ω). The renormalised self-energy vanishes, Σ̃σ(ω) = 0, for thefree quasiparti
le Green's fun
tion G̃(0)
k,σ(ω), whi
h 
an be separated into two independentbran
hes of free quasiparti
les,

G̃
(0)
k,σ(ω) =

uσ
+(εk)

ω − E0
k,+

+
uσ
−(εk)

ω − E0
k,−

, (7.23)where E0
k,± was de�ned in equation (7.14) and the weights are given by

uσ
±(εk) =

1

2



1 ∓ σ
∆µ̃

√

∆µ̃2 + ε̃2k



 . (7.24)This is similar in form to mean �eld theory, whi
h would 
orrespond to putting zσ = 1, and
∆µ̃ = Ummf , where mmf is the mean �eld sublatti
e magnetisation. The spin dependent
ontribution in (7.24) whi
h arises from the se
ond term is most marked in the region near
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tra 131the Fermi level. It should be noted that the quasiparti
le ex
itations E0
k,± and weights

uσ
±(εk) here are de�ned by expanding the self-energy at ω = 0. This is so that they
orrespond to the free quasiparti
les in the renormalised perturbation theory whi
h havean in�nite lifetime.The spe
tral density ρ̃(0)

k (ω) for this free quasiparti
le Green's fun
tion is a set of delta-fun
tions,
ρ̃
(0)
k,σ(ω) = uσ

+(εk)δ(ω − E0
k,+) + uσ

−(εk)δ(ω − E0
k,−). (7.25)On the Fermi surfa
e E0

k,− = 0, whi
h is 
onsistent with the result for the Fermi surfa
egiven in equation (7.19). Summing over k gives the lo
al quasiparti
le density of states inequation (7.15). We de�ne the quasiparti
le number ñ as the integral of the sum of thespin up and spin down quasiparti
le density of states up to the Fermi level,
ñ =

2
√
z↑z↓

0
∫

−∞

dω(ω + µ̃)
√

(ω + µ̃)2 − ∆µ̃2
ρ0

(

√

(ω + µ̃)2 − ∆µ̃2

√
z↑z↓

)

. (7.26)If we 
hange the variable of integration to ω′, where ω′√z↑z↓ =
√

(ω + µ̃)2 − ∆µ̃2, theintegration 
an be shown to be identi
al with that in equation (7.21), using the fa
t that
µ0 = −√

µ̄↑µ̄↓. We then have an alternative statement of Luttinger's theorem in the form
ñ = n. This 
an also be found by summing both spin 
omponents in (7.25), integratingover ω and then 
onverting the k-summation to an integral over the free ele
tron densityof states ρ0(ω). We 
an 
he
k in our numeri
al results that the relation in this form holds.The o

upation number n 
an be 
al
ulated both from a dire
t evaluation of the numberoperator in the ground state, and also by integrating the sum of the spe
tral densities
ρσ(ω) of the full lo
al Green's fun
tion to the Fermi level. The value of ñ is similarlydetermined from the integral over the total quasiparti
le density of states, ρ̃σ(ω). All threeresults were found to be in good agreement, to within one or two per
ent deviation at themost.Before dis
ussing the k-resolved spe
tra in detail we would like to ask what the spe
tralweight wqp of a quasiparti
le ex
itation at the Fermi level in the lower band is,

Gqp(ω) =
wqp

ω − E0
kF,−

. (7.27)For this we 
an not fo
us on the spin dependent sublatti
e quantities, but have to sumover both sublatti
es or equivalently the two spin 
omponents. The reason for this is thatthe antiferromagneti
ally ordered state does not possess any net magnetisation and has onaverage as many spin up polarised as spin down ele
trons. The division in the A and Bsublatti
es is 
onvenient for the DMFT 
al
ulations but somewhat arti�
ial. In our 
asewith hole doping the Fermi level lies within the lower band, whi
h for the free quasiparti
lesis denoted by E0
k,−. The 
orresponding weight on the Fermi surfa
e de�ned by (7.19) isthen given by

wqp =
∑

σ

zσu
σ
−(εkF

) =
z↑ + z↓

2
+

(z↑ − z↓)∆µ̃

2|µ̃| , (7.28)
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 Antiferromagnetswhere the average of the renormalised 
hemi
al potential µ̃ and the di�eren
e ∆µ̃ werede�ned below equation (7.14). From the de�nition of ∆µ̃ we see that the se
ond termin (7.28) is spin rotation invariant. The spe
tral quasiparti
le weight wqp on the Fermisurfa
e depends not only on the renormalisation fa
tors zσ, but also on the renormalised
hemi
al potentials µ̃0,σ. The same result for the weight (7.28) 
an be obtained from thediagonal form of Gk,σ(ω) and the spe
tral weight of the lower band. The weight wqp
orresponds to the spe
tral weight Z at the Fermi level as for example given in referen
esDagotto (1994), Sangiovanni et al. (2006b,a). The �rst term of the result for wqp is likethe arithmeti
 average of zσ. From �gure 7.2 we 
an see that z↑ > z↓ and from �gure 7.3that µ̃0,↓ < µ̃0,↑ < 0. Therefore the se
ond term in (7.28) gives a positive 
ontributionto the spe
tral weight. At the end of the 
hapter in �gure 7.10 we show values of wqp in
omparison with the arithmeti
 average of zσ.In order to understand better the properties of the quasiparti
le bands, we now 
om-pare the quasiparti
le spe
trum with the k-resolved spe
tral density ρk,σ(ω) derived fromthe DMFT-NRG results. In �gure 7.6 we make a 
omparison for the 
ase of 12.5% dop-ing with U = 3 for the Green's fun
tion Gk,σ(ω) given in equation (7.18), ρk,σ(ω) =

−ImGk,σ(ω+)/π, where ω+ = ω + iη, with η → 0, with that derived for the free quasipar-ti
les, zσρ̃(0)
k,σ(ω) from equation (7.25).
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Figure 7.6: The spe
tral density ρk,σ(ω) for the spin-up ele
trons (upper panel) and spin-down (lower panel) plotted as a fun
tion of ω and a sequen
e of values of εk for U = 3and 12.5% doping. Also shown with arrows are the positions of the free quasiparti
leex
itations, with the height of the arrow indi
ating the 
orresponding weight.The delta-fun
tions of the free quasiparti
le results are indi
ated by arrows with the heightof the arrow indi
ating the value of the 
orresponding spe
tral weight. The plots as afun
tion of ω are shown for a sequen
e values of εk and, where the peaks in ρk,σ(ω) getvery narrow and high in the vi
inity of the Fermi level, they have been trun
ated. It
an be seen that the free quasiparti
le results give a reasonable pi
ture of the form of
ρk,σ(ω), parti
ularly in the immediate region of the Fermi level. There is 
onsiderable
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tra 133variation along the 
urves in the way the overall spe
tral weight is distributed between theex
itations below and above the pseudo-gap as a fun
tion of εk. This is most marked inthe region near the Fermi level for the spin-up ele
trons where most of the spe
tral weightis in the lower band and it is mu
h redu
ed in the upper band, whereas the opposite isthe 
ase for the spin-down ele
trons. This is re�e
ted in the analyti
 form of the weights
uσ
±(εk), equation (7.24). For instan
e, the majority spin weight u↑−(εk) for the lower band
E0

k,− be
omes maximal near the Fermi energy, whereas u↑+(εk) goes to zero there. The�nite width of the quasiparti
le peaks in ρk,σ(ω) 
an be des
ribed by a RPT, when we takeinto a

ount the renormalised self-energy Σ̃σ(ω) in equation (7.22). If we, for instan
e, usethe se
ond order approximation in Ũ , whi
h was mentioned in the last se
tion, we get asimilar behaviour for small ω as seen for ρk,σ(ω) in �gure 7.6.From the positions of the peaks in the ρk,σ(ω) spe
tra we 
an dedu
e two bran
hes ofan e�e
tive dispersion Ek,± for single parti
le ex
itations and 
ompare it with the ones forthe free quasiparti
les E0
k,±. We give the results for U = 3 in �gure 7.7.
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Figure 7.7: A plot of the peaks in the spe
tral density ρk,σ(ω) (full line) as a fun
tion of εkfor U = 3 (left) and U = 6 (right) and 12.5% doping 
ompared with the free quasiparti
ledispersion E0
k (dashed line). For U = 6 on the range shown the lower band Ek,− 
ompletely
oin
ides with the free quasiparti
le band E0

k,−It 
an be seen that E0
k,− tra
ks the peak in the lower band 
losely over a wide range of

εk, −1.5 < εk < 1.5 (note the bandwidth W = 4). This is not the 
ase in the upperband, where E0
k,+ tra
ks the peak 
losely only in the lowest se
tion that lies 
losest to theFermi level. As one 
an see from the dotted line the Fermi level lies in the lower band andinterse
ts the lower band twi
e. This 
orresponds to the two values with opposite sign ε±kFas 
an be see from equation (7.19).The 
orresponding results for k resolved spe
tra for U = 6 and also 12.5% dopingare shown in �gure 7.8. In order to 
ompare well with the 
ase U = 3 we have 
hosenan identi
al range for ω and εk, although the large spe
tral peaks near the energy arevery 
lose together in this presentation. It 
an be seen that the overall features are verysimilar to those seen for U = 3. For the spin up spe
trum (upper panel) the peaks for
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Figure 7.8: The spe
tral density ρk,σ(ω) for the spin-up ele
trons (upper panel) and spin-down (lower panel) plotted as a fun
tion of ω and a sequen
e of values of εk for U = 6and 12.5% doping. Also shown with arrows are the positions of the free quasiparti
leex
itations, with the height of the arrow indi
ating the 
orresponding weight.the lower band have most of the weight near the Fermi energy, whereas the upper bandis suppressed there, and vi
e versa for the opposite spin dire
tion. The lower bands aretra
ked well by the free quasiparti
les, and we 
an see that the bands for the larger value of
U are signi�
antly �atter. This is also 
learly visible in �gure 7.7 (right), where we again
ompare the quasiparti
le band with the peak position of the full spe
tra. On the rangeshown the lower band Ek,− 
ompletely 
oin
ides with the free quasiparti
le band E0

k,−.From the k-resolved spe
tra in �gures 7.6 and 7.8 we 
an also extra
t the width of thequasiparti
le peak ∆qp in the spe
tral density ρk,σ(ω). Its inverse 1/∆qp gives a measureof the quasiparti
le lifetime. The results for ∆qp for the lower band Ek,− for the two 
ases
U = 3, 6 and 12.5% doping are shown in �gure 7.9 as fun
tion of εk. This plot brings outmore 
learly the feature that 
an be seen already in �gures 7.6 and 7.8 (upper panel) thatthe width in
reases sharply when we move away from the Fermi level and the values forthe width ∆qp for U = 6 are signi�
antly smaller than those for U = 3. This is in linewith the fa
t that the lo
al quasiparti
le intera
tion Ũ is smaller for the larger value ofthe bare intera
tion U as 
ommented on earlier. The free quasiparti
le pi
ture is thereforeeven more appropriate in the 
ase with stronger intera
tion. To numeri
al a

ura
y thewidth vanishes at ε±kF

and is �nite for the interval ε−kF
< εk < ε+kF

whi
h lies within thelower band but above the Fermi level.Another quasiparti
le property that 
an be extra
ted from our 
al
ulations is the en-han
ement of the e�e
tive mass m∗/m. In a Fermi liquid it is reasonable to de�ne m∗/mas the ratio of the linear expansion 
oe�
ients of the non-intera
ting and intera
ting dis-persion relation evaluated on the Fermi surfa
e (7.19) 1. If we use the free quasiparti
le1In DMFT the Fermi surfa
e of the non-intera
ting and intera
ting system have the same form and wedo not need to spe
ify the k-ve
tor for the e�e
tive mass.
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Figure 7.9: Left: A plot of the width of the peaks ∆qp in the spe
tral density ρk,σ(ω) as afun
tion of εk for U = 3 (dashed line) and U = 6 (full line) and 12.5% doping. Right: Theratio m∗/m plotted over a range of t2/U for 7.5% doping. For the bare band bandwidth
W = 4 we have t =

√
2 here.form E0

k,− from equation (7.14) for the intera
ting 
ase, this yields
m∗

m
=

|∇kεk|
|∇kE

0
k,−|

∣

∣

∣

∣

∣

kF

=
1

√
z↑z↓

|µ̃|
√

µ̃0,↑µ̃0,↓

. (7.29)The e�e
tive mass enhan
ement therefore does not only depend on zσ, but also on therenormalised 
hemi
al potentials µ̃0,σ. The general trend for m∗/m 
al
ulated from (7.29)as fun
tion of t2/U 
an be seen in �gure 7.9 (right) for the 
ase of 7.5% doping. Thee�e
tive mass in
reases strongly for large U as the hole motion is energeti
ally more 
ostlyin the ordered ba
kground. The fa
t that the lower band for U = 6 seen in �gure 7.7(right) is �atter than in the 
ase U = 3 in �gure 7.7 (left) 
an be 
learly attributedto the larger e�e
tive mass. We �nd a similar behaviour for m∗/m as fun
tion of Ufor di�erent �lling fa
tors from the ones shown in �gure 7.9 (right). The trend is thatthe e�e
tive mass enhan
ement is less pronoun
ed for larger doping, whi
h is intuitivelyunderstandable by the quasiparti
le motion in an ordered ba
kground. In the DMFTframework for the paramagneti
 state as well as the 
ase with homogenous magneti
 �eld,the quasiparti
le spe
tral weight wqp and the inverse of the e�e
tive mass enhan
ement
m/m∗ 
an be des
ribed simply by the renormalisation fa
tor zσ. In �gure 7.10 we 
omparethe spe
tral quasiparti
le weight wqp (7.28) the arithmeti
, (z↑ + z↓)/2, and geometri
,
√
z↑z↓, average of the renormalisation fa
tors, and the inverse of the e�e
tive mass, m/m∗,from equation (7.29) for U = 3 for various dopings.As seen in this 
ase with antiferromagneti
 symmetry breaking these quantities take adi�erent form (7.28) and (7.29) and have distin
t values. As a �rst approximation thequasiparti
le spe
tral weight wqp 
orresponds to the arithmeti
 average of the renormal-isation fa
tors zσ , whilst m/m∗ relates to the geometri
 average. In general, one 
an,
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m/ m*Figure 7.10: Comparison of the spe
tral quasiparti
le weight wqp (7.28) the arithmeti
,
(z↑ + z↓)/2, and geometri
, √z↑z↓, average of the renormalisation fa
tors, and the inverseof the e�e
tive mass, m/m∗, (7.29) for U = 3 for various dopings.however, not omit the dependen
e on the renormalised 
hemi
al potential as it gives asigni�
ant 
ontribution as seen in �gure 7.10. This 
an be understood for example for thelimit of zero doping. The system then be
omes an antiferromagneti
ally ordered insulatorwith a spe
tral gap. The weights zσ tend to �nite quite large values, but the e�e
tive massmust diverge. This is found in equation (7.29) sin
e µ̃0,↑ → 0 for δ → 0 and the trend 
anbe seen in �gure 7.10.To summarise, we have given a detailed analysis of the properties of the renormalisedquasiparti
les in a metalli
 antiferromagneti
 state in the Hubbard model. The 
al
ula-tions are based on a 
ommensurate antiferromagneti
 ordering in a bipartite latti
e and
arried out within the DMFT-NRG framework. It is shown that the relevant quasiparti
leparameters 
an be dedu
ed by two di�erent methods, whi
h give values whi
h are in reason-able agreement. We have presented results for k-resolved spe
tral fun
tions, and analysedthem in terms of quasiparti
le bands. We also gave expli
it expressions for the quasipar-ti
le spe
tral weight and the e�e
tive mass in terms of the renormalised parameters. Theresults for the spe
tral quasiparti
le weight wqp are on the whole in agreement with earlier
al
ulations (Dagotto 1994) and more re
ent ones (Sangiovanni et al. 2006b,a). In refer-en
e Dagotto (1994) the e�e
tive quasiparti
le bandwidth Weff in the t-J-model is foundto de
rease with de
reasing J . This is line with our results if we identify Weff ∼ m/m∗and J ∼ t2/U (see �gure 7.9).



Chapter 8The attra
tive Hubbard model
Παντα ρεi.Hera
litus, 500 BC

In this �nal 
hapter we present results of a preliminary study of the attra
tive Hubbardmodel within the DMFT-NRG approa
h. First we dis
uss the relevan
e of the model andin whi
h situations it is applied. Then we outline the details for the DMFT approa
h.This is followed by a presentation of results for stati
 expe
tation values, like the averagepair density and the anomalous expe
tation value as fun
tion of the lo
al attra
tion U anddynami
 spe
tral fun
tions.8.1 The BCS-BEC 
rossoverWhilst in the foregoing 
hapters we have dis
ussed impurity and latti
e models with a lo
alrepulsion, we 
onsider a system of fermions with lo
al attra
tion in this last 
hapter of thethesis. As outlined in se
tion 1.2.2 the attra
tive model and the repulsive model 
an bemapped onto one another by a spin-isospin transformation. Symmetry breaking �elds inthe spin 
hannel then take the role of the 
orresponding symmetry breaking �elds in the
harge 
hannel. Hen
e, for instan
e, the repulsive Hubbard model with the spontaneousantiferromagneti
 symmetry breaking as dis
ussed in the last 
hapter translates to a 
hargeordering symmetry breaking for the attra
tive model. At half �lling 
harge order andsuper
ondu
tivity are degenerate as they form part of a larger symmetry group there.The fo
us here is on the super
ondu
ting state, whi
h 
orresponds to an o�diagonal longrange order in 
ontrast to the diagonal long range order for the antiferromagneti
 and
harge ordered state. To study super
ondu
ting solutions it is therefore better to 
onsidera situation with a di�erent �lling fa
tor, x 6= 1. We will explore the super
ondu
tingphase both at half �lling and also for quarter �lling, where no degenera
y with the 
hargeordered state o

urs. The problem is approa
hed in a similar way as before with DMFT-NRG 
al
ulations.There are various reasons why it is of interest to study the attra
tive Hubbard model.One of them is that it 
an be viewed as an e�e
tive model for super
ondu
tors for di�erent
oupling strength. In fa
t, in the famous theory of Bardeen, Cooper and S
hrie�er (1957)



138 The attra
tive Hubbard model(BCS) an e�e
tive attra
tive model with a Debye 
uto� is studied. The lo
al attra
tionbetween the ele
trons 
an be thought of as mediated by a boson, a phonon or ex
iton forinstan
e (Mi
nas et al. 1990). Retardation e�e
ts are negle
ted in su
h an approa
h. Inthe weak 
oupling limit, U → 0, BCS mean �eld theory has been very su

essful. Theresulting ex
itation gap ∆sc in the spe
trum and the transition temperature Tc 
an beobtained from simple mean �eld equations (Mi
nas et al. 1990), and one �nds that bothdepend exponentially on U , viz ∆sc, Tc ∼ e−1/Uρ0 . The general pi
ture in this situationis that for any attra
tive intera
tions the Fermi-surfa
e of the non-intera
ting ele
trons isunstable to the formation of Cooper pairs (Cooper 1956). These pairs extend over a largerange in position spa
e and are often referred to as momentum spa
e pairs, c†k,↑c
†
−k,↓. Thekineti
 energy for the state with these pairs is a bit larger than in the normal phase, butthe bound-state formation leads to a gain in potential energy. The Cooper pairs only beginto form at the transition temperature Tc.In 
ontrast, in the strong 
oupling limit, where |U | ex
eeds the other energy s
ales, thefermions are tightly bound to lo
al pairs in position spa
e already at a high temperature

T0 of the order of U . These pairs behave like real bosons and 
an therefore undergoBose-Einstein 
ondensation (BEC) at a lower temperature Tc, whi
h is proportional to theparti
le density and the inverse of the mass of the pairs mB. In this limit the e�e
tivemass mB of a boson (pair of fermions) 
an be related to the inverse of the pair hoppingamplitude tB. One �nds tB = 4t2/U in the latti
e model (Dupuis 2005), and thus mB ∼ U .As a 
onsequen
e the 
riti
al temperature for 
ondensation de
reases with U , Tc ∼ t2/Uin the BEC limit. The transition here is driven by kineti
 energy, whi
h is lowered asfermion pairs join the 
ondensate with the lowest energy. The single parti
le ex
itationgap ∆sc in this limit is proportional to the magnitude of the attra
tion, ∆sc ∼ U , sin
ethe binding energy of the pair in
reases linearly with U . These two limiting 
ases, theweak 
oupling BCS limit and the strong 
oupling BEC limit, 
orrespond to quite di�erentsituations and it is remarkable that as dis
overed over the years, they are 
onne
ted by asmooth 
rossover (Eagles 1969, Nozières and S
hmitt-Rink 1985, Randeria 1995, Leggett2006). It was shown that the spe
tral gap ∆sc at zero temperature evolves smoothly fromsmall to large U . Also the BCS wave-fun
tion from the weak 
oupling limit 
an be seen togo over 
ontinuously to a wave fun
tion of bosons as fermioni
 pairs in the strong 
ouplinglimit. Moreover, the transition temperature Tc to the super�uid state is a smooth fun
tionof the lo
al attra
tion 
onne
ting the BCS and BEC limit. Here we will fo
us on theattra
tive Hubbard model to study this BCS-BEC 
rossover. It is worth mentioning thatthis problem has also been investigated by a 
ontinuum �eld theoreti
 model (Haussmann1992, Dupuis 2005, Randeria 1995, for instan
e).In the 1990s experimental groups were �rst able to realise BECs for laser 
ooled bosoni
atoms, from whi
h the �eld of 
old atomi
 gases emerged. In re
ent years many groups havealso fo
used on studying the properties of fermioni
 
old gas systems. When loaded into anopti
al trap their intera
tion 
an be tuned by means of a Feshba
h resonan
e. One therefore



8.2 The DMFT setup 139has a very 
lean and 
ontrollable system, whi
h 
an be modelled by the Hubbard model.It has been possible to generate a BEC of tightly bound fermions (Greiner et al. 2003,Zwierlein et al. 2004), and experimental groups are working on dete
ting the full 
rossoverto the BCS limit (Zwierlein et al. 2005). Apart from the 
old gases the study of the BCS-BEC 
rossover had already been taken up by 
ondensed matter resear
hers interested inunderstanding the strong 
oupling and high temperature super
ondu
tors (Mi
nas et al.1990). The high temperature super
ondu
tors 
ontain some properties, whi
h are betterunderstood in terms of lo
al pairs, preformed above the transition temperature Tc, thanin the BCS pi
ture (Tos
hi et al. 2005). DMFT studies for the attra
tive Hubbard modelhave been 
arried out by Keller et al. (2001) and Capone et al. (2002) in the normal phase,and more re
ently by Garg et al. (2005) and Tos
hi et al. (2005) in the broken symmetryphase. Here we will also fo
us on des
ribing the attra
tive Hubbard model for various U inthe broken symmetry phase employing the DMFT-NRG method. The work presented inthis 
hapter is still in progress and the results are at a preliminary stage. We will thereforekeep the presentation very brief.8.2 The DMFT setupWe want to study the attra
tive Hubbard model in the grand 
anoni
al formalism (1.35),
H = −

∑

i,j,σ

(tijc
†
i,σcj,σ + h.c.) − µ

∑

iσ

niσ − U
∑

i

ni,↑ni,↓. (8.1)For 
onvenien
e we take this form (8.1) with U > 0. To study super
ondu
ting order wein
lude an expli
it super
ondu
ting symmetry breaking term Hsc with a ��eld� ∆0
sc. Aftera latti
e Fourier transform (8.1) then reads

H +Hsc =
∑

k,σ

(εk − µ)c†k,σck,σ − ∆0
sc

∑

k

[c†k,↑c
†
−k,↓ + h.c.] − U

∑

i

ni,↑ni,↓. (8.2)Note that we have not restri
ted the k-summation in Hsc. The non-intera
ting Green'sfun
tion is best worked out in Nambu spa
e like in (5.10), i.e.,
G0

k(ω)−1 =

(

ω − ξk ∆0
sc

∆0
sc ω + ξk

)

, (8.3)where we have introdu
ed ξk = εk − µ. The intera
ting problem 
an be treated by intro-du
ing the matrix self-energy Σk(ω) su
h that the intera
ting Green's fun
tion is given bythe Dyson equation
Gk(ω)−1 = G0

k(ω)−1 − Σk(ω). (8.4)The DMFT formulation in the path integral formalism for this model is in analogy towhat has been presented in 
hapter 2. Due to the symmetry breaking �eld it is, however,
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tive Hubbard modelsuitable to work in Nambu spa
e with
Ci(τ) :=

(

ci,↑(τ)

c†i,↓(τ)

)and 2×2 matri
es. The e�e
tive Weiss �eld is now a 2×2 matrix G−1
0 (τ) and the e�e
tivea
tion on the �0�-site reads

Se� = −
β
∫

0

dτ

β
∫

0

dτ ′
∑

σ

C0(τ)G−1
0 (τ − τ ′)C0(τ

′) − U

β
∫

0

dτ
∑

i

n0,↑(τ)n0,↓(τ). (8.5)As the e�e
tive impurity model we 
onsider the attra
tive Anderson model in a super
on-du
ting medium (5.1) as dis
ussed in the beginning of 
hapter 5 with an additional on-sitesymmetry breaking ∆d
sc. The non-intera
ting Green's fun
tion matrix then has the formof equation (5.17),
G0(ω)−1 = ω12 − εdτ3 − ∆d

scτ1 −K(ω), (8.6)where εd = −µ and the on-site symmetry breaking �eld ∆d
sc = ∆0

sc. The generalised matrixhybridisation for the medium K(ω) has the form
K(ω) = τ3

1

N

∑

k

V 2
k gk

(ω)τ3, (8.7)where g
k
(ω) was given in (5.11).The DMFT self-
onsisten
y equation (2.71) in this 
ase with symmetry breaking is amatrix equation,

G−1
0 (ω) = G(ω)−1 + Σ(ω), (8.8)where we have dropped the k-dependen
e of the self-energy. We use the NRG to solve thee�e
tive impurity problem for a given medium K(ω) and 
al
ulate Σ(ω). From this we
an obtain the diagonal lo
al latti
e Green's fun
tion whi
h for the super
ondu
ting 
asetakes the form [
f. (8.3) and (8.4)℄,

G(ω) =

∫

dε
ρ0(ε)(ζ2(ω) + ε)

(ζ1(z) − ε)(ζ2(ω) + ε) − (∆0
sc − Σ21(ω))(∆0

sc − Σ12(ω))
, (8.9)where ζ1(ω) = ω+µ−Σ11(ω) and ζ2(ω) = ω−µ−Σ22(ω). As before ρ0(ε) is the density ofstates of non-intera
ting fermions. The o�diagonal lo
al latti
e Green's fun
tion is givenby

Goff (ω) = −Σ21(ω)

∫

dε
ρ0(ε)

(ζ1(ω) − ε)(ζ2(ω) + ε) − (∆0
sc − Σ21(ω))(∆0

sc − Σ12(ω))
. (8.10)We denote G11 = G, G21 = Goff and G21(ω) = G12(−ω)∗, G22(ω) = −G11(−ω)∗. TheseGreen's fun
tions 
an be 
olle
ted to the matrix G. Having 
al
ulated the lo
al Green'sfun
tion G the self-
onsisten
y equation (8.8) determines the new Weiss �eld and medium.



8.3 Renormalised quasiparti
le des
ription 141We take the impurity model in the form des
ribed in 
hapter 5, and identifyG0(ω) = G0(ω).Then from equation (8.6) we obtain an equation for the e�e
tive medium matrix K(ω).This has the general form (8.7), with diagonal,
K11(ω) =

1

N

∑

k

V 2
k

ω + εk
ω2 − (ε2k + ∆2

sc)
(8.11)and o�diagonal part,

K21(ω) =
1

N

∑

k

V 2
k

−∆sc

ω2 − (ε2
k

+ ∆2
sc)
. (8.12)Note that the parameter of the medium ∆sc is di�erent from the �external �eld� ∆0

sc. Inthe 
al
ulations with spontaneous super
ondu
ting order we will always 
onsider the limit
∆0

sc → 0, where a solution with super
ondu
ting symmetry breaking will have a bathparameter ∆sc 6= 0. Due to the symmetry broken form (8.11) and (8.12) it is not straightforward to extra
t the parameters εk, Vk and ∆sc and the 
orresponding ones for thee�e
tive linear 
hain problem relevant in the NRG approa
h. To 
arry out the 
al
ulationshere we have 
onsidered the diagonal part of the medium K11(ω) as the earlier s
alarfun
tion K(ω), from whi
h we 
an 
al
ulate the linear 
hain parameters by the standardmethod (Bulla et al. 1997, Bauer 2007). The medium parameter ∆sc (see 
hapter 5) isdetermined from the mean �eld 
riterion
∆sc = U〈c0,↑c0,↓〉 = U

0
∫

−∞

dω
(

− 1

π
ImGoff (ω)

)

. (8.13)This pro
edure has the advantage that the same NRG program as for 
al
ulations for thelo
al model in 
hapter 5 
an be used. The obvious disadvantage is that we do not makefull use of the self-
onsisten
y equation involving K21(ω), and the mean �eld 
riterion(8.13) overestimates the size of the gap ∆sc. An improved approa
h needs to take into thefull matrix stru
ture of the self-
onsisten
y equation properly, and a more general formof medium for the Anderson model with for instan
e an energy dependent parameter ∆scneeds to be 
onsidered. One possible way for su
h a generalisation is des
ribed in Bauer(2007) se
tion 1.4.3.8.3 Renormalised quasiparti
le des
riptionThe k-dependent Green's fun
tion is given as in equation (8.4),
Gk(ω) =

(

ω + ξk − Σ22(ω) ∆0
sc − Σ12(ω)

∆0
sc − Σ21(ω) ω − ξk − Σ11(ω)

)

[ω − ξk − Σ11(ω)][ω + ξk − Σ22(ω)] − [∆0
sc − Σ12(ω)][∆0

sc − Σ21(ω)]
, (8.14)The ex
itations of the system 
an be analysed as usual as the poles of (8.14), whi
h aregiven by the zeros of the denominator. In order to be able to develop a simple pi
ture of



142 The attra
tive Hubbard modelthe quasiparti
le ex
itation of the attra
tive Hubbard model we pro
eed in a similar wayas in 
hapter 5, where we studied the bound state equation with renormalised parameters.We expand the diagonal self-energies to linear order and approximate the o�-diagonalones by a real 
onstant at ω = 0, similar as in (5.27). This is motivated by the fa
tthat the imaginary part of the self-energy vanishes in the gap, ImΣ(ω) = 0, and the fa
tthat numeri
al results for the real part show an approximately linear behaviour. In thisapproximation the ex
itations are given by
E0,±

k = ±E0
k = ±

√

ξ̃2k + ∆̃2
sc, (8.15)where we have introdu
ed ξ̃k = z[ξk − Σ(0)] and ∆̃sc = z(∆0

sc − Σoff(0)), with the usualde�nition z−1 = 1−Σ(0)′. We 
an see that when we study spontaneous broken symmetryand take the limit ∆0
sc → 0, the super
ondu
ting gap is mainly given by the value zΣoff(0).Then the diagonal quasiparti
le Green's fun
tion G̃0

k(ω) and the o�diagonal part G̃0,off
k

(ω)
an be written in the well-known form
G̃0

k(ω) =
u2

k

ω − E0
k

+
v2
k

ω + E0
k

, G̃0,off
k (ω) = ukvk

( 1

ω − E0
k

− 1

ω +E0
k

)

, (8.16)where
u2

k =
1

2

(

1 +
ξ̃k
E0

k

)

, v2
k =

1

2

(

1 − ξ̃k
E0

k

)

. (8.17)These expressions des
ribe the two bands of quasiparti
le ex
itations and their weights.They redu
e the Bogoliubov mean �eld result for z → 1 and Σ(0) = Un/2 and Σoff(0) =

U〈c0,↑c0,↓ 〉. This result is most a

urate in the weak 
oupling limit for small U . Inthe strong 
oupling limit, the spe
tral gap is large and therefore the expansion around
ω = 0 is more questionable. We will show, however, that in the 
al
ulations presented thespe
tra 
an still be des
ribed well by the approximation (8.16). The spe
tral gap is thenproportional to U .In BCS theory the ex
itation gap ∆sc at T = 0 
an be found from the equation

∆sc = U
∑

k

ukvk =
U

2

∑

k

z∆sc

E0
k

=
U

2

∑

k

∆sc
√

(εk − µ0)2 + ∆2
sc

, (8.18)where µ0 = µ − Σ(0) and the gap is de�ned as in equation (8.13), ∆sc = U〈c0,↑c0,↓ 〉.Equation (8.18) is 
learly appli
able in the weak 
oupling limit, but also gives a reasonableresult in the strong 
oupling limit, where ∆sc = U
√

x(2 − x)/2 (Mi
nas et al. 1990); x isthe �lling fa
tor. As mentioned earlier the gap ∆sc given by (8.18) interpolates thereforesmoothly between the BCS and BEC limit. From equation (8.18) we 
an also determinethe anomalous expe
tation value 〈c0,↑c0,↓〉.Another quantity of interest is the double o

upan
y 〈n↑n↓〉 or average pair density.In the non-intera
tion limit it is given by (x/2)2. The probability to �nd an ele
tronwith spin σ on site is x/2 and as the parti
les are un
orrelated 〈n↑n↓〉 = (x/2)2. In the



8.4 Results 143strong 
oupling limit the probability to �nd an ele
tron on site is still x/2, but sin
e theattra
tive energy is large the probability to �nd another one there goes to one, and therefore
〈n↑n↓〉 → x/2. In other words, all parti
les are then bound to pairs and the pair density isgiven by half the �lling fa
tor, 〈n↑n↓〉 = x/2. The double o

upan
y 〈n↑n↓〉 multiplied by
U is also of interest as it gives the expe
tation value of the potential energy. For a systemin a 
oherent super�uid state another relevant quantity is the super�uid sti�ness Ds. It isa measure for the energy required to to twist the phase of the 
ondensate. It is thereforerelated to the degree of phase 
oheren
e of the super
ondu
ting parti
les, and it is usuallyproportional to the super�uid density ns. It 
an be found either from the weight of thedelta-fun
tion in the opti
al 
ondu
tivity or from the 
urrent-
urrent 
orrelation fun
tion.In the DMFT approa
h and for the Bethe latti
e with semi
ir
ular density of states ρ0(ε)(2.75) it 
an be 
al
ulated dire
tly from the o�diagonal Green's fun
tion (Tos
hi et al.2005). At zero temperature it takes the form,

Ds = − 8

π

∫

dεk ρ0(εk)V (εk)

0
∫

−∞

dω ImGr,off
k (ω)ReGr,off

k (ω), (8.19)where Gr,off
k

(ω) is the retarded o�diagonal Green's fun
tion (8.14) and V (εk) = (4t2−ε2k)/3is a square vertex (Tos
hi et al. 2005). We 
an evaluate the expression (8.19) using therenormalised quasiparti
le Green's fun
tion zG̃0,off
k

(ω) (8.16), whi
h yields the somewhatsimpler expression
Dqp

s = 4z2

D
∫

−D

dεk ρ0(εk)V (εk)
u2

kv
2
k

E0
k

. (8.20)8.4 ResultsWe have 
arried out DMFT-NRG 
al
ulations for the attra
tive Hubbard model at half andquarter �lling in the state with spontaneously broken symmetry, ∆0
sc → 0. For simpli
itythe semi
ir
ular density of states (2.75) was used. The energy s
ale is set by t = 1 su
h thatthe bare bandwidth W = 4. In �gure 8.1 we give results for the stati
 expe
tation valuesdouble o

upan
y 〈n↑n↓〉 and the anomalous expe
tation value 〈c0,↑c0,↓〉 as a fun
tion of

U for x = 1 (left) and x = 0.5 (right).We 
an see that as dis
ussed above the pair density or double o

upan
y in
reases 
on-tinuously from the value (x/2)2 (1/4, left, and 1/16, right) at U = 0 to the value (x/2)(1/2 and 1/4). The anomalous expe
tation value 〈c0,↑c0,↓〉 is zero in the non-intera
ting
ase, and for small U it in
reases like e−1/Uρ0(0) as in BCS theory. For large U it tendsto the value √x(2 − x)/2 (1/2, left, and 0.433, right) as dis
ussed above. The gap ∆scis then proportional to U as expe
ted in the BEC limit (energy for pair breaking). Thedashed line gives the result for 〈c0,↑c0,↓ 〉 from the mean �eld equation (8.18), whi
h �tsthe DMFT-NRG result very well for the full range of intera
tions U . Due to numeri
al
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0,↓ 〉Figure 8.1: The stati
 expe
tation values double o

upan
y 〈n↑n↓ 〉 and the anomalousexpe
tation value 〈c0,↑c0,↓ 〉 as a fun
tion of U for half �lling (left) and quarter �lling(right). The dashed line gives the result for 〈c0,↑c0,↓〉 from the mean �eld equation (8.18).problems with the small gap and very sharp peaks the BCS limit was not investigated ingreat detail with the DMFT-NRG 
al
ulations.In �gure 8.2 the super�uid sti�ness Ds 
al
ulated from equation (8.19) is shown as afun
tion of U for half �lling (left) and for quarter �lling (right). The dashed line showsthe result as obtained from equation (8.20), where the quasiparti
le Green's fun
tions areused to evaluate the integrals.
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Figure 8.2: The super�uid sti�ness Ds as 
al
ulated from the o�diagonal Green's fun
tionin equation (8.19) for x = 1 (left) and x = 0.5 (right). The dashed line gives the result for
Ds, when evaluated with the quasiparti
le Green's fun
tions as in (8.20).We 
an see that the results forDs agree generally well, whi
h shows that the approximation
(8.20) is already quite good. In both 
ases for the �lling the super�uid sti�ness is maximalin the BCS limit and de
reases to small values in the BEC limit. Ds is proportional tothe inverse of the e�e
tive mass of the pairs mB ∼ U , and therefore expe
ted to de
reaselike 1/U . The system in this limit 
onsists of heavy, weakly intera
ting bosons, withlittle phase 
oheren
e. The results shown are in agreement with the ones reported by
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hi et al. (2005). At the time of writing it has not been possible to investigate the BCSlimit, U → 0, in more detail with the DMFT-NRG 
al
ulation in detail due to numeri
alproblems when evaluating the integrals in (8.19). It 
an, however, be studied in BCS mean�eld theory based on (8.18) for the gap. One �nds in the limit U → 0, whi
h implies that
∆sc → 0, that the super�uid sti�ness Ds goes to a 
onstant value. The super�uid sti�nessis therefore maximal in the BCS limit, when 
al
ulated with the approximations here.We now turn to the spe
tral fun
tions ρk(ω) = −ImGk(ω)/π. In the BCS limit we ex-pe
t that they 
an be des
ribed well by the free quasiparti
le spe
tra zρ̃0

k = z[−ImG̃0
k(ω)]/π(8.16). In �gure 8.3 we plot the k-resolved spe
tra in the two limiting 
ases for U = 1(BCS limit, left) and U = 6 (BEC-limit, right) for quarter �lling, x = 0.5.
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Figure 8.3: The k-resolved spe
tral fun
tions ρk(ω) for quarter �lling in the BCS-limit,
U = 1 (left), and towards the BEC limit, U = 6 (right). The arrows show the delta-fun
tionpeaks of zρ̃0

k(ω), where the height of the arrow indi
ates the weight of the peak.We plots show a small spe
tral gap for U = 1 and a large gap (Eg = 2∆sc) of the order of Ufor the strong 
oupling 
ase. We 
an see a series of broadened quasiparti
le peaks whi
h aremost narrow in the region εk = µ0, where µ0 = µ−Σ(0) (numeri
ally µ0 ≃ −0.79 for U = 1and µ0 ≃ −1.61 for U = 6). As 
an be seen εk = µ0 is also the point where the spe
tralgap is minimal. We have also added arrows 
orresponding to zρ̃0
k(ω), whi
h indi
ate theposition of the quasiparti
le peaks ±E0

k and the height gives the spe
tral weight. We 
ansee that they tra
k very well the position of the real quasiparti
le ex
itation Ek in both
ases. The width of the peaks 
omes from the imaginary part of the self-energies whi
hlead to a �nite life-time of these quasiparti
les. These spe
tra 
an be 
ompared with theones presented by Garg et al. (2005). There the quasiparti
le ex
itation delta peaks aredis
onne
ted from the 
ontinuum, whi
h is however an artefa
t of the approximation forthe self-energy there, whose imaginary part vanishes over too large a region in ω. Asmentioned, in the BEC limit (right) the e�e
tive mass mB of a boson pair mB ∼ U . This
an be seen re�e
ted in the small e�e
tive band width for the 
ase U = 6. In this 
ase itis not related to the quasiparti
le weight z, whi
h assumes values 
lose to one. The weightof the peaks in the full spe
trum ρk(ω) is in a

ordan
e with the height of the arrows for
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zρ̃0

k(ω). We 
an see that in the BCS limit (left) the weight in the lower band de
reasesrapidly to zero near εk = µ0, whereas in the BEC limit (right) it spreads over a mu
hlarger region. This 
an be seen in more 
learly in �gure 8.4, where we plot the momentumdistribution nk = v2
k 
al
ulated from (8.17) for x = 1 (left) and x = 0.5 (right).
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Figure 8.4: The momentum distribution nk = v2
k 
al
ulated from (8.17) for x = 1 (left)and x = 0.5 (right).In both 
ases (x = 0.5, 1) for small attra
tion (U = 1) we 
an see that nk shows the typi
alform known from BCS theory dropping from one to zero in a small range around εk = µ0.Therefore, some momentum states above µ0 are o

upied, but only in a small region ofthe order of the gap. When U is in
reased, the momentum distribution is spread over alarger range. In the BEC limit, where the fermions are tightly bound and therefore verylo
alised in position spa
e, we expe
t the momentum distribution to be spread due to theun
ertainty prin
iple. In all 
ases the sum rule 1/N

∑

k nk = x/2 is satis�ed numeri
allywithin an a

ura
y of about 1%.To summarise, we have dis
ussed the behaviour of attra
tive fermions in the Hubbardmodel from weak to strong 
oupling at T = 0 with the DMFT-NRG approa
h. We founda smooth 
rossover of the relevant response quantities, expe
tation values and the spe
tralfun
tions. The des
ription in terms of non-intera
ting renormalised quasiparti
les 
ouldon the whole represent the results of the full DMFT-NRG 
al
ulation well.



Con
lusions
Cuando estes triste, ponte a 
antar,
uando estes alegre, ponte a llorar.Cuando estes va
io, de verdad va-
io, ponte a mirar. Jaime Sabines

A number of di�erent topi
s in 
ondensed matter theory have been addressed in this thesis,ranging from Kondo physi
s in quantum dot systems with normal and super
ondu
tingleads over magneti
 order in latti
e models to super�uidity for attra
tive fermions. Beforeputting the s
ienti�
 
ontributions into perspe
tive let us re
apitulate on what has beenpresented.After the des
ription of the relevant models (AIM and Hubbard model) and methods(NRG, RPT and DMFT) in the �rst part, we have studied the AIM subje
t to 
ertaintypes of symmetry breaking. We saw that the low energy quasiparti
le ex
itations andthe response of the AIM to a magneti
 �eld 
ould be 
hara
terised well in terms of �elddependent renormalised parameters. In an RPT expansion based on these parameters dy-nami
 
orrelation fun
tions 
ould be dedu
ed, and they were in good agreement with NRGresults for a signi�
ant range of frequen
ies. This approa
h was shown to be generalisableto the non-equilibrium situation where the RPT is 
arried out in the Keldysh-formalism.It 
ould be used there to 
al
ulate the non-equilibrium di�erential 
ondu
tan
e in quan-tum dot systems in a magneti
 �eld. Thus, we have presented a reliable des
ription of theAIM in magneti
 �eld in equilibrium with NRG and RPT, and a promising possibility forthe non-equilibrium situation in the RPT framework. For the one-parti
le quantities inboth the equilibrium and non-equilibrium 
ase, however, a more thorough analysis of theRPT approa
h is ne
essary to understand, what the most important pro
esses are up to a
ertain s
ale, in frequen
y ω, magneti
 �eld h, and voltage eV . Also the treatment of the
ounter-terms for the renormalised self-energy, when summing diagrams to in�nite order,has not been 
ompletely satisfa
tory from a formal perspe
tive.For the AIM with super
ondu
ting symmetry breaking in the bath we gave a thoroughdes
ription of stati
 and dynami
 properties dedu
ed from NRG 
al
ulations. This in
ludedthe ground state transition from a singlet to a doublet state with varying intera
tion or levelposition. We presented detailed results for the position and weight of the lo
alised ex
itedstate in the gap, the Andreev bound state. These quantities 
ould also be 
al
ulated froma renormalised parameter analysis based on a low energy expansion of the self-energy. Asthe system is not a Fermi liquid we 
ould not readily extend the method of extra
ting theserenormalised parameters from the NRG low energy ex
itations. This might, however, bepossible when a more general form of the ex
itation is 
onsidered and 
an be subje
t of
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lusionsfurther resear
h.For the latti
e model in a homogeneous magneti
 �eld in the third part of the thesis,we showed that the methods applied to the lo
al model 
ould be extended. We were ableto dedu
e renormalised parameters for the quasiparti
le des
ription and to 
al
ulate thedynami
 sus
eptibilities in an RPT expansion. We also presented a thorough analysis ofdi�erent types of qualitative behaviour of the strongly 
orrelated ele
tron system in a mag-neti
 �eld. This in
ludes the phenomenon of metamagnetism, whi
h o

urs at half �llingand intermediate 
oupling strength. Away from half �lling no metamagneti
 behaviour wasobserved, but renormalisation e�e
ts near half �lling are strong and the spin dependente�e
tive masses of the quasiparti
les di�er markedly.The last two 
hapters dealt with spontaneous symmetry breaking. We analysed ingreat detail the properties of the quasiparti
le ex
itations in a metalli
 antiferromagneti
state. Renormalised parameters 
ould be dedu
ed as before, but the symmetry breakingnature leads to expressions for the spe
tral quasiparti
le weight and the e�e
tive massenhan
ement di�erent from the ones in the normal state, where they are just given by theinverse of one another. Therefore, the quasiparti
les in the doped antiferromagneti
 system
an have a rather large spe
tral weight and at the same time a large e�e
tive mass. This
an be understood physi
ally from the hole motion in an antiferromagneti
ally orderedstate. For the 
orresponding attra
tive system we studied the broken symmetry state withsuper
ondu
ting order. We showed that the 
rossover of stati
 quantities and spe
tralfun
tions from the BCS super
ondu
ting regime at weak 
oupling to the BEC regime oftightly bound fermions at strong 
oupling o

urs smoothly. We also saw at half and atquarter �lling for any attra
tion that the stati
 and dynami
 properties of the system
an be des
ribed in a good approximation by non-intera
ting, renormalised quasiparti
leex
itations. This is not surprising in the BCS limit, but it is remarkable in the BEC limit,where there is a large spe
tral gap.With these diverse situations in mind we 
an return to the unifying question of the thesisposed in the introdu
tion: what are the properties of quasiparti
le ex
itations subje
t to
ertain symmetry breakings, and how 
an they be analysed. Clearly, the properties of thequasiparti
le ex
itations in lo
al and latti
e models of strongly 
orrelated fermions di�erwith the kind of symmetry breaking o

uring. For instan
e, the lo
al system remains aFermi liquid for any magneti
 �eld applied, whereas the ground state of the latti
e model
an be insulating. We have shown, however, that a des
ription in terms of renormalisedparameters, whi
h 
an be obtained from the one-parti
le self-energy, and in some 
ases alsodire
tly from the low lying ex
itations, is possible in all 
ases dealt with here. This is veryimportant as it allows us to formulate a simpli�ed des
ription in terms of non-intera
tingrenormalised quasiparti
les, whi
h is valid as a �rst approximation. It is remarkable thatthis is not limited to the 
ases, where the system is stri
tly a Fermi liquid, but also worksfor 
ases with symmetry breaking. This suggests that the RPT approa
h is extendableto a larger 
lass of systems, and it has already been proven to be useful for the latti
e



149models in 
hapters 6 and 7. This gives an ex
iting prospe
t, but we have to bear in mindthat the work 
arried out for the latti
e models is exa
t only in the in�nite dimensionallimit. Therefore, the work presented is only a pie
e in a mu
h larger puzzle, whi
h provides
ertain links and insights but requires future work in many dire
tions. We will mentionbut a few in the following.The NRG 
al
ulations for the AIM in magneti
 �eld give a rather 
omplete pi
ture.More work is needed to understand the details of the RPT approa
h both in equilibriumand non-equilibrium. This in
ludes �nding good perturbative approximations as well asa satisfa
tory treatment of the 
ounter-terms. A self-
onsistent approa
h with dressedquasiparti
le propagators, as sket
hed in the appendix C.3, gives a promising route to fol-low. The AIM in a super
ondu
ting bath at and away from half �lling is well understoodfrom 
al
ulations with the NRG methods by this and other groups' work. A better under-standing of the low energy ex
itations in terms of renormalised quasiparti
les would be ofinterest. Moreover, an extension of the analysis to the situation with two leads with dif-ferent 
omplex gap parameters, Josephson 
urrents and non-equilibrium transport, wouldbe of 
onsiderable interest for theory and experiment.As for the latti
e models, many future avenues of resear
h 
an be envisaged leadingon from the work presented, and we 
an only hint towards a few. For instan
e, the e�e
tof phonons in doped antiferromagneti
ally ordered state is of 
onsiderable interest in the
ondensed matter 
ommunity as it 
an be relevant for the understanding of the behaviourof materials of strongly 
orrelated ele
trons, for instan
e the 
uprate super
ondu
tors. Alsoordered states in more 
ompli
ated models than the Hubbard model, e.g. with 
ouplingto a lo
alised magneti
 moment, would be of great interest. The attra
tive model withsuper
ondu
ting order also deserves more attention. A DMFT-NRG treatment takinginto a

ount the full self-
onsisten
y equations needs to be 
arried out. Apart from themodel with on-site attra
tion, strongly 
orrelated models with a 
ompetition of on-siterepulsion and a 
oupling to lo
al phonon mode, like the Hubbard-Holstein model, withsuper
ondu
ting ordering 
ould then also be addressed. This would be of 
onsiderableinterest for the phenomenon of super
ondu
tivity in fullerides. These suggestions do not
omprise an exhaustive list, and many other studies 
ould be proposed.The �nal 
on
lusion at this stage is the hope that in the same way as this work hasbuilt on and bene�tted from many earlier studies, its insights may serve as a fruitful basisfor future resear
h on strong 
orrelation e�e
ts in 
ondensed matter physi
s. After all, asGeorge Bernard Shaw puts it, it is in the nature of s
ien
e that it never solves a problemwithout 
reating ten more.
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Appendix ASpe
tral fun
tions in the full densitymatrix (FDM) approa
hIn this se
tion of the appendix we give details for the full density matrix approa
h to
al
ulate spe
tral fun
tions in the NRG based on the Anders S
hiller basis. We deriveexpli
it expressions for the redu
ed density matrix and for dynami
 response fun
tions.A.1 General expressionsBefore deriving the general expressions for a 
orrelation fun
tion, let us �rst we establisha few general relations. The starting point for the following 
onsiderations is the 
ompleteAnders S
hiller (AS) basis for the NRG 
hain (2.20),
{|l,e;m〉}m=m0 ,...,N . (A.1)The unit operator 
an be then expressed as follows1 =

N
∑

m=m0

∑

l,e

|l,e;m〉〈l,e;m |. (A.2)Also the following relation for dis
arded (l) and kept part (k) 
an be found (Peters et al.2006),
N
∑

m=m1+1

∑

l,e

|l,e;m〉〈l,e;m | =
∑

k,e

|k,e;m1〉〈k,e;m1 |. (A.3)Our aim is now to express the one-parti
le Green's fun
tion in terms of the AS basisemploying the 
on
ept of the redu
ed density matrix. First we 
onsider generally foroperators A,B, tr(ρA(t)B) = tr(ρeiHtAe−iHtB). (A.4)



154 Spe
tral fun
tions in the full density matrix (FDM) approa
hThis is evaluated astr(ρeiHtAe−iHtB) =
∑

l,e,m

〈l,e;m|eiHtAe−iHtBρ|l,e;m〉

=
∑

l1,e1,m1

∑

l2,e2,m2

〈l1,e1;m1|eiHtAe−iHt|l2,e2;m2〉〈l2,e2;m2|Bρ|l1,e1;m1〉Now we divide the sum over m2 into three parts: m2 > m1, m2 = m1 and m2 < m1.Equation (A.3) 
an be used to write the part m2 > m1 astr(ρeiHtAe−iHtB)m2>m1 =
∑

m

∑

l,e1,k,e2

〈l,e1;m|eiHtAe−iHt|k,e2;m〉〈k,e2;m|Bρ|l,e1;m〉.(A.5)For m2 < m1 we rearrange the summation a

ording to
N
∑

m1=m0+1

m1−1
∑

m2=m0

f(m1,m2) =

N−1
∑

m2=m0

N
∑

m1=m2+1

f(m1,m2). (A.6)Using (A.3) we �nd then a similar term as in equation (A.5), but kept and dis
arded statesare inter
hanged,tr(ρeiHtAe−iHtB)m2<m1 =
∑

m

∑

l,e1,k,e2

〈l,e2;m|Bρ|k,e1;m〉〈k,e1;m|eiHtAe−iHt|l,e2;m〉.(A.7)If we 
olle
t all these terms we obtain the following expression tra
etr(ρeiHtAe−iHtB) =
∑

m

∑

l1,e1,l2,e2

〈l1,e1;m|eiHtAe−iHt|l2,e2;m〉〈l2,e2;m|Bρ|l1,e1;m〉

+
∑

m

∑

l,e1,k,e2

〈l,e2;m|Bρ|k,e1;m〉〈k,e1;m|eiHtAe−iHt|l,e2;m〉

+
∑

m

∑

l,e1,k,e2

〈l,e1;m|eiHtAe−iHt|k,e2;m〉〈k,e2;m|Bρ|l,e1;m〉.(A.8)By de�nition of the AS basis |k, e;m〉 and |l, e;m〉 are exa
t eigenstates of the Hamiltonianat stage m, Hm, Hm|α, e;m〉 = Eα
m|α, e;m〉. The approximation whi
h is made in orderto evaluate the expressions is that they are also eigenstates to the Hamiltonian of the full
hain H = HN , whi
h amounts to saying that the e�e
ts from further environment sites,whi
h due to the NRG setup 
ouple with de
reasing energies are only a small perturbation,

H|α, e;m〉 ≈ Eα
m|α, e;m〉. (A.9)This 
an be used in the expressions (A.8) above. We also assume that for zero temperaturedue to energy s
ale separation the density matrix 
an be given dire
tly in the diagonal basisat the last iteration

ρ =
∑

l

e−βN El
N

Z
|l,N〉〈l,N |. (A.10)



A.2 Details for Quantum numbers Q,Sz 155Here we 
an take βN ∼ ΛN/2 and Z =
∑

l e
−βNEl

N . As a 
onsequen
e, ρ|l,e;m 〉 = 0for m < N , sin
e the states are orthogonal. Therefore, only the term in the se
ondline in equation (A.8) 
ontributes. Terms with kept states at step Nmax vanish, sin
e byde�nition of the AS basis there are none. Taking into a

ount the 
ommutator term inthe de�nition of the retarded Green's fun
tion [GAB(t) = −iθ(t)tr(ρ[A(t), B]ε) (ε = −1bosoni
, ε = 1 fermioni
)℄ and 
olle
ting the above the results the general Green's fun
tion
GAB(ω) =

∫

dt eiωtGAB(t),
GAB(ω) =

∑

m

∑

l1,l2,l3

Bl2l3(m)ρred
l3l1

(m)Al1l2(m) + εAl1l2(m)ρred
l2l3

(m)Bl3l1(m)

ω − (El2
m − El1

m)

+
∑

m

∑

l,k1,k2

Blk1(m)ρred
k1k2

(m)Ak2l(m)

ω − (El
m − Ek2

m )
+
εAlk1(m)ρred

k1k2
(m)Bk2l(m)

ω − (Ek1
m − El

m)
.(A.11)The m-summation runs from m0, where the trun
ation starts to Nmax. We have used

〈l1,e1;m|A|l2,e2;m〉 = δe1,e2Al1l2(m), (A.12)and the de�nition of the redu
ed density matrix
ρred

k1k2
(m) =

∑

e

〈k1,e;m|ρ|k2,e;m〉. (A.13)Sin
e ρ|l,e;m〉 = 0 for m < N the term in the �rst line only 
ontributes for the last step
N and then, sin
e ρ is diagonal there, takes the form

G
(1)
AB(ω) =

1

Z

∑

l1,l2

Al1l2(N)Bl2l1(N)(e−βE
l1
N + εe−βE

l2
N )

ω − (El2
N − El1

N )
. (A.14)A.2 Details for Quantum numbers Q, SzIn the following se
tions we give the expli
it expressions for the matrix elements appearingin the 
al
ulations, when Q and Sz are good quantum numbers. We des
ribe how to 
al-
ulate the redu
ed density matrix, the one-parti
le Green's fun
tion and other 
orrelationfun
tions. When di�erent quantum numbers, e.g. Q and S, are used, the expressions aredi�erent due to the redu
ed matrix elements and Clebs
h Gordon 
oe�
ients, whi
h areusually used (Bauer 2007).A.2.1 Redu
ed density matrixIn this se
tion we will give the expressions for the density matrix in terms of matrix elementsand transformation matri
es for the 
ase where Q,Sz are good quantum numbers. Let thedensity matrix of the step N , whi
h is not ne
essarily the last iteration, be given by

ρN =
∑

Q,Sz,rN ,r′
N

|Q,Sz, rN 〉N WN (Q,Sz; rN , r
′
N ) N〈Q,Sz, r

′
N |. (A.15)



156 Spe
tral fun
tions in the full density matrix (FDM) approa
hWe start at N = Nmax with a diagonal ρ su
h that
WN (Q,Sz; rN , r

′
N ) = δrN ,rN′

e−λN EN (Q,Sz,rN )

ZN
, (A.16)

ZN = tr(e−λN H) and λN = βλ−
N−1

2 .The usual basis transformation in the NRG is given by (Bauer 2007)
|Q,Sz, rN 〉N =

∑

UQSz(rN ; rN−1, i)|Q,Sz , rN−1, i〉N , (A.17)where i = 1, . . . , 4 and rN = 1, . . . , 4rN−1. De�ne the Fo
k basis for site N on the linear
hain as |JN 〉 (JN = 1, . . . , 4) with
|1N 〉 := |0N 〉, |2N 〉 := f †N,↑|0N 〉, |3N 〉 := f †N,↓|0N 〉, |4N 〉 := f †N,↑f

†
N,↓|0N 〉. (A.18)The basis for step N and N − 1 are related by

|Q,Sz, rN−1, 1〉N := |Q+ 1, Sz, rN−1〉N−1 ⊗|1N 〉, (A.19)
|Q,Sz, rN−1, 2〉N := |Q,Sz −

1

2
, rN−1〉N−1 ⊗|2N 〉, (A.20)

|Q,Sz, rN−1, 3〉N := |Q,Sz +
1

2
, rN−1〉N−1 ⊗|3N 〉, (A.21)

|Q,Sz, rN−1, 4〉N := |Q− 1, Sz, rN−1〉N−1 ⊗|4N 〉. (A.22)The �rst step is to substitute (A.17) into (A.15),
ρN =

∑

WN (Q,Sz; rN , r
′
N )UQSz(rN ; rN−1, i)UQSz(r

′
N ; r′N−1, j) × (A.23)

×|Q,Sz, rN−1, i〉N 〈Q,Sz, r
′
N−1, j |.The redu
ed density matrix for step N − 1 is then found by the partial tra
e

ρN−1 =

4
∑

JN=1

〈JN |ρN |JN 〉. (A.24)This is evaluated by substituting (A.23) into (A.24) and making use of (A.19)-(A.22).This yields
ρN−1 =

∑

|Q,Sz, rN−1〉N−1 WN−1(Q,Sz; rN−1, r
′
N−1) N−1〈Q,Sz, r

′
N−1 | (A.25)with

WN−1(Q,Sz; rN−1, r
′
N−1) =

∑

rN ,r′
N

(

UQ−1,Sz(rN ; rN−1, 1)WN (Q− 1, Sz ; rN , r
′
N )UQ−1,Sz(r

′
N ; r′N−1, 1)

+UQ,Sz+ 1
2
(rN ; rN−1, 2)WN (Q,Sz +

1

2
; rN , r

′
N )UQ,Sz+ 1

2
(r′N ; r′N−1, 2)

+UQ,Sz−
1
2
(rN ; rN−1, 3)WN (Q,Sz −

1

2
; rN , r

′
N )UQ,Sz−

1
2
(r′N ; r′N−1, 3)

+UQ+1,Sz(rN ; rN−1, 1)WN (Q+ 1, Sz; rN , r
′
N )UQ+1,Sz(r

′
N ; r′N−1, 4)

)

. (A.26)



A.2 Details for Quantum numbers Q,Sz 157A.2.2 Expressions for the dynami
 
orrelations fun
tionsWe give the relevant expli
it expressions for the one-parti
le Green's fun
tion. The startingpoint is the Green's fun
tion in the general form (A.11) and we use A = cd,σ = B†. Letus deal with the term in the �rst line in (A.11), where we dire
tly take the representation(A.14). We use |l1〉 →|Q− 1, Sz − σ/2, l1〉 and |l2〉 →|Q,Sz, l2〉 and �nd
G

(1)
d,σ(ω) =

1

Z

∑

l1,l2

|〈Q,Sz, l2|c†d,σ |Q− 1, Sz − σ/2, l1〉|2(e−βE(Q−1,Sz−σ/2,l1) + e−βE(Q,Sz,l2))

ω − [E(Q,Sz , l2) − E(Q− 1, Sz − σ/2, l1)]
.(A.27)Then we fo
us on the terms in the se
ond line in (A.11) and look at the expression at aspe
i�
 iteration m < N and

G
(2),m
d,σ (ω) =

∑

l,k1,k2

[c†d,σ]lk1(m)ρred
k1k2

(m)[cd,σ ]k2l(m)

ω − (El
m − Ek2

m )
+

[cd,σ]lk1(m)ρred
k1k2

(m)[c†d,σ ]k2l(m)

ω − (Ek1
m − El

m)
.(A.28)Let us 
onsider the �rst term, whi
h des
ribes positive ex
itations between dis
arded(higher) energies and kept (lower) energies. We omit them index for the iteration and writefor the dis
arded states |l〉 →|Q,Sz, l〉. The kept state |k1〉 is written as |Q−1, Sz −σ/2, k1〉,whilst |k2〉 be
omes |Q− 1, Sz − σ/2, k2〉. Therefore, the 
oe�
ient 
an be written as

〈Q,Sz, l|c†d,σ |Q− 1, Sz − σ/2, k1〉W (Q− 1, Sz − σ/2; k1, k2)〈Q− 1, Sz − σ/2, k2|cd,σ|Q,Sz, l〉 =

〈Q,Sz, l|c†d,σ|Q− 1, Sz − σ/2, k1〉W (Q− 1, Sz − σ/2; k1, k2)〈Q,Sz, l|c†d,σ |Q− 1, Sz − σ/2, k2〉∗where this termed is summed over k1 from 1 to rg(Q − 1, Sz − σ/2), the 
orrespondingrange. We denote this expression in
luding the summation by ασ(Q,Sz; l, k2). The wholeterm 
an then be written as
∑

Q,Sz,k2

rg_bt(Q,Sz)
∑

l=rg(Q,Sz)+1

ασ(Q,Sz; l, k2)

ω − [E(Q,Sz , l) − E(Q− 1, Sz − σ/2, k2)]
, (A.29)where the range before the trun
ation rg_bt(Q,Sz) was used as summation limit. These
ond term in equation (A.28), whi
h a

ounts for negative energy ex
itations, similarlyhas the form

∑

Q,Sz,k1

rg_bt(Q,Sz)
∑

l=rg(Q,Sz)+1

ασ(Q+ 1, Sz + σ/2; l, k1)

ω − [E(Q+ 1, Sz + σ/2, k1) −E(Q,Sz , l)]
, (A.30)with ασ(Q+ 1, Sz + σ/2; l, k1) given by

〈Q,Sz, l|cd,σ |Q+ 1, Sz + σ/2, k1〉W (Q+ 1, Sz + σ/2; k1, k2)〈Q+ 1, Sz + σ/2, k2|c†d,σ|Q,Sz, l〉 =

〈Q+ 1, Sz + σ/2, k1|c†d,σ|Q,Sz, l〉∗W (Q+ 1, Sz + σ/2; k1, k2)〈Q+ 1, Sz + σ/2, k2|c†d,σ|Q,Sz, l〉



158 Spe
tral fun
tions in the full density matrix (FDM) approa
hThe higher F -Green's fun
tion, de�ned by
Fσ(t) = −iθ(t)〈{[cd,σc

†
d,−σcd,−σ](t), c†

,σ}〉, (A.31)
an be obtained starting from expression (A.11) in a similar way using A(t) = [cd,σn−σ](t)and B = c†,σ (Bauer 2007). In analogous way, the longitudinal spin 
orrelation fun
tion,given by
χl(t) = −iθ(t)〈[Sz(t), Sz]〉, (A.32)is found. We 
an set A = B = Sz and use the Green's fun
tion in the form (A.11) with

ε = −1. Similarly, with A = B∗ = S+ the transverse spin 
orrelation fun
tion 
an be
al
ulated. For details we refer the reader to (Bauer 2007).



Appendix BRenormalised parameters from NRG
al
ulationsIn this se
tion we des
ribe how renormalised parameters 
an be dedu
ed from the ex
ita-tions in the NRG 
al
ulations. We want to dis
uss the general 
ase, whi
h is valid for theimpurity models in part 2 (
hapters 3 and 4) as well as the latti
e models in 
hapters 6and 7. We start by 
onsidering a more general form of the linear 
hain Hamiltonian (2.1),in
luding the impurity but without the intera
tion term. It is denoted by H0
−1,N ,

H0
−1,N = Λ(N−1)/2

N
∑

σ,n=−1

εn,σc
†
n,σcn,σ + Λ(N−1)/2

N
∑

σ,n=−1

βn,σ(c†n,σcn+1,σ + h.c.). (B.1)Here βn,σ are the spin dependent hopping elements and on-site energies εn,σ of the linear
hain. We de�ned β−1,σ ≡ Vσ and ε−1,σ = εd,σ . For the DMFT situation with magneti
symmetry breaking the medium 
an be
ome polarised, whi
h implies that the 
omplexhybridisation fun
tion Kσ(ω) is spin-dependent. Therefore we need to in
lude a spin-dependent hopping amplitudes βn,σ as well as on-site energies εn,σ. They 
an be obtainedfrom ∆σ(ω) = ImKσ(ω) in a pro
edure des
ribed in Bulla et al. (1997).First we would like to derive the Green's fun
tion for this linear 
hain model. For a
ertain iteration N denote the linear 
hain model from site i to N by H0
i,N , i = 0, 1, ...,N .The Green's fun
tion at the impurity site 
an by written in matrix notation 〈−1|(ω −

H0
−1,N )−1| − 1〉 and related to other matrix elements depending on H0

i,N by a re
ursivepro
edure (|i〉 = f †i|vac〉). In order to �nd this expli
itly one needs to 
onsider the inversionof the 
orresponding band matri
es. Taking all fa
tors into a

ount one obtains the non-intera
ting Green's fun
tion for the linear 
hain model
Gσ

−1−1(ω) =
1

ω − εd,σΛ(N−1)/2 − V 2
σ ΛN−1g00,σ(ω)

(B.2)where gii,σ(ε) is the Green's fun
tion for site i and expressed as
gii,σ(ε) =

1

ε− εi,σΛ(N−1)/2 − β2
i,σΛ(N−1)gi+1i+1,σ(ε)

. (B.3)



160 Renormalised parameters from NRG 
al
ulationsNote that the Green's fun
tions 
orrespond to matrix elements gii,σ(ω) = 〈i|(ω−H0
i,N )−1|i〉.As usual one-parti
le ex
itations Eσ are given by the poles of the Green's fun
tion andhen
e by the equations (σ = ±1)

Eσ − εd,σΛ(N−1)/2 − V 2
σ ΛN−1g00,σ(Eσ) = 0. (B.4)For a 
ertain iteration N denote the single parti
le ex
itation from the ground state forthe non-intera
ting system by E0

p,σ(N) and the hole ex
itations by E0
h,σ(N). For the holeex
itation we have to in
lude a negative sign for the energy and also the opposite spin
orresponds to the value for the ex
itation, su
h that equation (B.4) gives in a slightrearrangement

E0
p.σ(N)Λ−(N−1)/2

V 2
σ

− εd,σ

V 2
σ

= Λ(N−1)/2g00,σ(E0
p,σ(N)) (B.5)and

−E0
h,σ(N)Λ−(N−1)/2

V 2
−σ

− εd,−σ

V 2
−σ

= Λ(N−1)/2g00,−σ(−E0
h,σ(N)). (B.6)We see therefore that the up/down spin hole ex
itations E0

h,↑(N)/ E0
h,↓(N) are related tothe parameters εd,↓/ εd,↑, respe
tively.This analysis of the non-intera
ting problem 
an be extended by swit
hing on theintera
tion U . The aim is to determine the renormalised parameters ε̃d,σ and Ṽ 2

σ for thequasiparti
le ex
itations (Hewson et al. 2004). As above, for a 
ertain iteration N , butnow for the intera
ting system denote the single parti
le ex
itation from the ground stateby Ep,σ(N) and Eh,σ(N) in analogy as hole ex
itation. The N -dependent free quasiparti
leparameters ε̃d,σ(N) and Ṽσ(N)2 are then in analogy to (B.5) and (B.6) given by
Ep,σ(N)Λ−(N−1)/2

Ṽ 2
σ (N)

− ε̃d,σ(N)

Ṽ 2
σ (N)

= Λ(N−1)/2g00,σ(Ep,σ(N)) (B.7)and
−Eh,σ(N)Λ−(N−1)/2

Ṽ 2
−σ(N)

− ε̃d,−σ(N)

2Ṽ 2
−σ(N)

= Λ(N−1)/2g00,−σ(−Eh,σ(N)). (B.8)Note that Ep,σ(N) and Eh,σ(N) are obtained numeri
ally at ea
h NRG step. The lowenergy renormalised parameters ε̃d,σ, ∆̃σ are then de�ned by ε̃d,σ = limN→∞ ε̃d,σ(N) and
∆̃σ = limN→∞ ∆̃σ(N). In pra
ti
e for most 
ases, for Λ = 2 a number of iterations
Nmax ≃ 50 is su�
ient to determine the renormalised parameters a

urately. We 
an givean expli
it equation for ∆̃(N) by subtra
ting the two equations above

Ṽ 2
σ (N) = Λ−(N−1) Ep,σ(N) + Eh,−σ(N)

g00,σ(Ep,σ(N)) − g00,σ(−Eh,−σ(N))
(B.9)and from this ε̃d,σ(N) is easily determined in (B.7).



161We 
an also determine the lo
al quasiparti
le intera
tion Ũ from the NRG results. Theidea that helps to �nd it is to noti
e that it must be related to the di�eren
e between a two-parti
le ex
itation and two one-parti
le ex
itations. Having determined the quasiparti
leparameters ε̃d,σ and Ṽd,σ via the pro
edure des
ribed above, we 
an give the free quasi-parti
le Hamiltonian [(1.12) without Ũ ℄ in the linear 
hain form. It 
an be diagonalisednumeri
ally and written as
Hσ = Λ−N−1

2

(N+2)/2
∑

k=1

(Ep,k,σp
†
k,σpk,σ + Eh,k,σh

†
k,σhk,σ) (B.10)where pk,σ and hk,σ are parti
le and hole operators, respe
tively. All terms involve a spinlabel σ, but no mixing of opposite spins o

urs. Therefore, we 
an diagonalise the twospin 
omponents separately. We denote the energeti
ally lowest one-parti
le ex
itation by

Ep,1,σ, su
h that Ep,1,σ = Ep,σ (see above), and similarly for the holes. In order to relatethe quasiparti
le intera
tion term with Ũ [
f. eq. (1.12)℄
Hqp,int = ŨΛ(N−1)/2 : d†↑d↑d

†
↓d↓ : (B.11)to the one-parti
le and two-parti
le ex
itation Eσ,σ′

pp , whi
h are 
al
ulated numeri
ally inthe NRG, we have to use inverse of the basis transformation to the eigenstates in (B.10)
dσ =

(N+2)/2
∑

k=1

[ψp,k,σ(−1)pk,σ + ψh,k,−σ(−1)h†k,−σ]. (B.12)Then the 
orresponding to Ũσ,σ′

pp parti
le parti
le term is
d†↑d↑d

†
↓d↓ ∼

∑

k1,k2,k3,k4

ψ∗
p,k1,↑(−1)ψp,k2,↑(−1)ψ∗

p,k3,↓(−1)ψp,k4,↓(−1)p†k1,↑pk2,↑p
†
k3,↓pk4,↓.(B.13)If we only take into a

ount the single lowest one-parti
le ex
itation Ep,1,↑ and Ep,1,↓ (k1 =

k2 = k3 = k4 = 1) and the two-parti
le ex
itation E↑,↓
pp (N) the renormalised intera
tion

Ũ↑,↓
pp (N) is seen to be inferred from (Hewson et al. 2004)
E↑,↓

pp (N) − Ep,↑(N) − Ep,↓(N) = Ũ↑,↓
pp (N)Λ(N−1)/2

∣

∣ψ∗
p,1,↑(−1)

∣

∣

2 ∣
∣ψ∗

p,1,↓(−1)
∣

∣

2
. (B.14)In a similar way we 
an look at parti
le-hole ex
itations E↑,↑

ph (a hole ↑ ex
itation 
or-responds to a parti
le ↓-ex
itation) to �nd an equation for the e�e
tive quasiparti
le-quasihole intera
tion Ũ↑,↑
ph

E↑,↑
ph (N) −Ep,↑(N) − Eh,↑(N) = Ũ↑,↑

ph (N)Λ(N−1)/2
∣

∣ψ∗
p,1,↑(−1)

∣

∣

2 ∣
∣ψ∗

h,1,↑(−1)
∣

∣

2
, (B.15)and also for hole-hole ex
itations

E↓,↑
hh (N) − Eh,↓(n) − Eh,↑(N) = Ũ↓,↑

hh (N)Λ(N−1)/2
∣

∣ψ∗
h,1,↓(−1)

∣

∣

2 ∣
∣ψ∗

h,1,↑(−1)
∣

∣

2
. (B.16)For large N these quantities are seen to 
onverge to a 
ertain value whi
h is found to agree.We 
an therefore identify Ũ = Ũ↑,↓

pp = −Ũ↑,↑
ph = Ũ↓,↑

hh .





Appendix CRenormalised Perturbation TheoryIn this part of the appendix we give a few more additional details for the RPT approa
h.First, we give a proof that the theory is well de�ned order by order. Then we outline analternative formal des
ription, whi
h 
ould form the basis for 
al
ulations in the equilib-rium. We also des
ribe the formal setup of a self-
onsistent theory based on the LuttingerWard fun
tional approa
h. In the last se
tion we give details for the extension of the RPTto the the non-equilibrium 
ase.The generating fun
tional for the renormalised perturbation theory is given by equation(2.42),
Zr[J ] =

∫

D(dr
σ , d

r
σ)e−Sr [dr

σ ,d
r
σ]−Sc[dr

σ ,d
r
σ]−SJ [dr

σ,d
r
σ ]. (C.1)The renormalised parameter a
tion Sr is given in the earlier equation (2.43), the a
tionfor the 
ounter-terms is given in (2.45) and the one-parti
le irredu
ible (1PI) sour
e termis de�ned as in (2.47). This was used to generate the perturbation theory as in equation(2.52). First we give a proof that the RPT approa
h 
an be 
arried out order by order.C.1 Proof for the feasibility of the RPT approa
hWe want to prove generally that a renormalised perturbation theory as de�ned by (C.1)
an be 
arried out order by order. We need to prove that the renormalisation 
onditions(2.40) and (2.41) 
an always be satis�ed. This proof is 
arried out by indu
tion. As apreliminary it is helpful to 
lassify the 
ontributions to the proper self-energy into threedi�erent types, as done before in the main text:

• (a) terms ΣŨ (iωn) 
oming purely from AIM intera
tion term e−Sr

Ũ . They 
orrespondto the diagrams in the standard perturbation theory of the AIM.
• (b) terms 
oming purely from e−Sc

0 , whi
h 
orrespond to trivial 
ounter-terms whi
h
an be 
olle
ted to a self-energy 
ontribution Σct(iωn) = −[λ1 + λ2iωn℄.
• (
) mixed terms Σmix

λ1,λ2,λ3
(iωn) generated by the 
ombination e−Sr

Ũ , e−Sc
0 , and e−Sc

λ3 .



164 Renormalised Perturbation TheoryThe perturbative renormalised self-energy to order n is given by
Σ̃(n)(iωn) =

n
∑

k=1

[

∑

m

Σ
(k,m)

Ũ
(iωn) +

∑

m

Σ
mix,(k,m)
λ1,λ2,λ3

(iωn)
]

+ Σct(iωn), (C.2)where Σ(k,m) denotes the mth diagrammati
 
ontribution to the self-energy of order k. Wehave omitted the spin index for notational simpli
ity.In order to 
lassify di�erent orders of the perturbation theory it is useful to think ofthe 
ounter-term parameters as expanded in Ũ (Hewson 2001),
λi =

∑

k

λ
(k)
i Ũk. (C.3)Then for ea
h order of the perturbation theory we have to determine the 
oe�
ients λ(n)

iin this expansion, su
h that (2.40) and (2.41) are satis�ed, whilst all mixed terms forthe renormalised self-energy are in
luded. Note that the mixed terms for a diagrammati

ontribution to order n have generally a prefa
tor of the form
Ũ

m0+
3

P

i=1

n
P

mi=1
mil

(mi)
i

3
∏

i=1

(λ
(mi)
i )l

(mi)
i , (C.4)where l(mi)

i ∈ N0 has to be 
hosen su
h that it gives the number of times a 
ounter-term
ontribution of type i of the order mi in Ũ appears in the diagram; m0 gives the orderfrom the standard AIM perturbative expansion in Ũ 
orresponding to (a). For a diagramof order n we need to have the 
ondition
m0 +

3
∑

i=1

n
∑

mi=1

mil
(mi)
i = n (C.5)Note that l(n)

i = 0 for i = 1, 2, and therefore to order n the terms λ(n)
1 and λ(n)

2 only appearin the last term Σct in (C.2).Similarly, we 
an 
lassify the di�erent 
ontributions to the full renormalised vertexat zero frequen
y Γ̃(0), where we use a simpli�ed notation here. We have terms Γ̃Ũ (0),su
h as in (a) above, whi
h 
ome from e−Sr

Ũ only. For later 
onvenien
e let us take the�rst order term, whi
h is just equal to Ũ , separately. We also take the equivalent termfor λ3 separately. As in (
) above we have mixed terms from original and 
ounter-term
ontributions, whi
h we denote by Γ̃mix
λ1,λ2,λ3

(0). They will generally have the same prefa
toras in (C.4), but here we have mi ∈ [0, n−1] for i = 0, 1, 2, 3, sin
e we have taken out the Ũand λ3 term. The full renormalised vertex at zero frequen
y to order n > 1 is then givenby
Γ̃(n)(0) = Ũ + λ3 +

n
∑

k=2

[

∑

m

Γ̃
(k,m)

Ũ
(0) +

∑

m

Γ̃
mix,(k,m)
λ1,λ2,λ3

(0)
]

, (C.6)



C.1 Proof for the feasibility of the RPT approa
h 165where similar to the 
ase of the self-energy Γ̃(k,m) denotes the mth diagram of order k.This is all the notation we need in the following.To prove the indu
tion step, n− 1 → n, we will assume that for an RPT to order n− 1in Ũ all 
onstants λ(k)
i , k < n have been determined su
h that the renormalised self-energyand vertex satisfy the renormalisation 
onditions, i.e.,

Σ̃(n−1)(0) = 0,
∂

∂iω
Σ̃(n−1)(iω = 0) = 0 (C.7)and

Γ̃(n−1)(0) = Ũ . (C.8)Now for order n one has to determine all diagrams of type (a) and (
) for the self-energyand vertex. These quantities to order n are then given by equation (C.2) and (C.6),respe
tively. The renormalisation 
ondition for the vertex (2.41) reads
Ũ +

n
∑

k=1

λ
(k)
3 Ũk +

n
∑

k=1

[

∑

m

Γ̃
(k,m)

Ũ
(0) +

∑

m

Γ̃
mix,(k,m)
λ1,λ2,λ3

(0)
]

= Ũ . (C.9)Note that only the se
ond term 
ontains λ(n)
3 and no term here 
an 
ontain λ(n)

1 or λ(n)
2 .Now, a

ording to the assumption of the indu
tion, the 
ounter-term parameters λ(k)

i for
k < n have been 
hosen su
h that (C.8) is satis�ed, whi
h implies that all terms with
k < n vanish. This yields the equation

λ
(n)
3 Ũn +

[

∑

m

Γ̃
(n,m)

Ũ
(0) +

∑

m

Γ̃
mix,(n,m)
λ1,λ2,λ3

(0)
]

= 0. (C.10)All parameters entering the se
ond and third term in this equation have been spe
i�ed for
k < n and thus (C.10) yields a unique solution for λ(n)

3 , provided that all diagrams havebeen evaluated. Similarly, we 
onsider the �rst 
ondition for the renormalised self-energy(2.40), whi
h reads
0 = Σ̃(n)(0) =

n
∑

k=1

[

∑

m

Σ
(k,m)

Ũ
(0) +

∑

m

Σ
mix,(k,m)
λ1,λ2,λ3

(0)
]

+
n
∑

k=1

λ
(k)
1 Ũk (C.11)Note that the mixed terms do not 
ontain λ(n)

1 or λ(n)
2 , but they 
an 
ontain a term with

λ
(n)
3 , whi
h has been determined from (C.10). A

ording to the indu
tion assumptionterms for k < n are 
hosen su
h that (C.7) is satis�ed, and therefore all terms for k < n
an
el, whi
h leaves us with

0 =
[

∑

m

Σ
(n,m)

Ũ
(0) +

∑

m

Σ
mix,(n,m)
λ1,λ2,λ3

(0)
]

+ λ
(n)
1 Ũn. (C.12)This uniquely determines λ(n)

1 . A similar argument holds for the se
ond part of the renor-malisation 
ondition (2.40) to determine λ(n)
2 , whi
h 
on
ludes the indu
tion step. For theproof it only remains to be shown that the 
ase n = 1 
an be satis�ed, whi
h we haveillustrated as one of the examples in se
tion 2.2.2. We 
an therefore 
on
lude at this stagethat it is possible to 
arry out this RPT to any given order n.



166 Renormalised Perturbation TheoryC.2 Alternative Setup for the RPTWe gave a formulation of how to generate a perturbation theory based on taking all 
ounter-terms as intera
tions in 
hapter 2. A di�erent formulation will be illustrated here, whereterms of similar kind are 
olle
ted. Starting again from (C.1) we 
an reformulate the theoryslightly,
Zr[J ] =

∫

D(dr
σ, d

r
σ)e

−Sr
0 [dr

σ,d
r
σ ]−Sr

Ũ
[dr

σ ,d
r
σ]−Sc

0[dr
σ,d

r
σ ]−Sc

λ3
[dr

σ ,d
r
σ ]−SJ [dr

σ,d
r
σ ] (C.13)

= e
−Sr

(Ũ+λ3)
[δJσ ,δ

Jσ
]
∫

D(dr
σ, d

r
σ)e−Sr

0 [dr
σ,d

r
σ ]−Sc

0[dr
σ,d

r
σ ]−SJ [dr

σ ,d
r
σ] (C.14)

= e
−S(Ũ+λ3)[δJσ ,δ

Jσ
]Zr

0 [J ]. (C.15)We have 
olle
ted the intera
tion terms 
orresponding to Ũ and λ3 as they are of iden-ti
al form, and did not treat the free 
ounter-terms as intera
tion terms. The Gaussianintegration gives similar as before
Zr

0 [J ] = e
−

P

σ

β
R

0

dτ
β
R

0

dτ ′ Jσ(τ)Gr
σ,λ1,λ2

(τ−τ ′)Jσ(τ ′)
, (C.16)where

Gr
σ,λ1,λ2

(τ − τ ′) = [G−1
0 (τ − τ ′) + [Gc,0

σ (τ − τ ′)]−1]−1 (C.17)The free 
ounter-terms are in
luded in the propagator, whi
h now takes the general form
Gr

σ,λ1,λ2
(τ − τ ′) =

1

β

∑

n

e−iτωn
1

iωn − ε̃d,σ −Kr
σ(iωn) + λ1 + λ2iωn

. (C.18)As 
an be seen from the generating fun
tional (C.15) the perturbation expansion is easiernow 
onsisting only of the terms, whi
h were mentioned above under (a). These are theterms of the standard perturbation theory for the AIM. We denote these terms, whi
hthrough the propagator depend on the 
ounter-term 
onstants by Σ(Ũ+λ3)
(iωn, λ1, λ2).The Dyson equation for this setup reads

Gd,σ(iωn)−1 = Gr
d,σ(iωn)−1 − Σ(Ũ+λ3)

(iωn, λ1, λ2). (C.19)Comparing with the earlier Dyson equation we 
an identify the renormalised self-energyin this s
heme as
Σ̃(iωn) = Σ(Ũ+λ3)(iωn, λ1, λ2) − λ1 − λ2iωn (C.20)and the renormalisation 
onditions (2.40) be
ome self-
onsisten
y equations

λ1 = Σ(Ũ+λ3)(0, λ1, λ2) (C.21)and
λ2 =

∂

∂iω
Σ(Ũ+λ3)

(iω = 0, λ1, λ2). (C.22)



C.3 Fun
tional integral des
ription in the 2PI formalism 167The renormalisation 
ondition for the vertex remains the same (2.40) taking into a

ountthat all propagators are given by (C.18) and the intera
tion is Ũ + λ3.Although su
h a setup at �rst sight appears promising due the mu
h simpler stru
tureof the perturbation expansion it turns out that it is di�
ult to 
arry out the expansion inthis form. We had seen that the 
ounter-term parameters in
lude 
ontributions to di�erentorder [
f eq. (C.3)℄. The setup de�ned by (C.15) and the free propagator (C.18) impliesthat 
ounter-term 
ontributions to all orders are in
luded even in the low order diagramsdis
ussed in the last se
tion. They 
ould be expanded again in orders of Ũ , but that islike going ba
k to the earlier se
tion, or one has to devise a 
onsistent way of in
ludingdiagrams to all orders with these 
ounter-term 
ontributions. It turns out that these 
anin fa
t be done better in a frame work where also the renormalised self-energy is in
ludedin the propagators, or in other words the expansion is 
arried out in terms of the fullpropagators. This is then ne
essarily a self-
onsistent theory. The natural formalism forsu
h an approa
h is the formulation in terms of a Luttinger Ward fun
tional and the 2PIs
heme, whi
h will be des
ribed in the following se
tion.C.3 Fun
tional integral des
ription in the 2PI formalismThe generating fun
tional for the renormalised theory in the two-parti
le irredu
ible (2PI)s
heme is given by
Zr[η] =

∫

D(dr
σ, d

r
σ)e−Sr [dr

σ,d
r

σ ]−Sc[dr
σ,d

r

σ ]−Sη[dr
σ ,d

r

σ], (C.23)with the renormalised a
tion Sr as in equation (2.43) and the a
tion for the 
ounter-termsas in (2.45). The di�eren
e to the earlier 
ase is the sour
e term, whi
h is de�ned by
Sη =

∑

σ,σ′

β
∫

0

dτ

β
∫

0

dτ ′ d
r
σ(τ)ησ,σ′(τ, τ ′)dr

σ′(τ ′). (C.24)We 
an de�ne a generating fun
tional for 
onne
ted Green's fun
tions,
W r[η] = logZr[η]. (C.25)The 
onne
ted n-parti
le renormalised Green's fun
tion is obtained via

G
r,(n)
σ1,...σn;σ′

1,...σ′
n
(ω1, . . . ωn;ω′

1, . . . ω
′
n) = ζn δ2nW r[η]

δησ′
1,σ1

(ω′
1, ω1) . . . δησ′

n,σn
(ω′

n, ωn)

∣

∣

∣

∣

∣

η=0

. (C.26)We 
an write
− δW r[η]

δησ′,σ(ω′, ω)
= −〈dr

σ′(ω′)dr
σ(ω)〉η = 〈dr

σ(ω)d
r
σ′(ω′)〉η = Gr

σ,σ′(ω, ω′), (C.27)
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h the generalised Green's fun
tion Gσ,σ′(ω, ω′) is de�ned. It is suitable to performa Legendre transform to a new generating fun
tional Γr[Gr],
Γr[Gr] =

∑

σ,σ′,n,n′

Gr
σ,σ′(iωn, iω

′
n)ησ,σ′(iωn, iω

′
n) −W r[η], (C.28)whose natural variable is Gr

σ,σ′(iωn, iω
′
n). This fun
tional generates proper vertex fun
tions(Negele and Orland 1988). By fun
tional di�erentiation we �nd

δΓr[Gr]

δGr
σ,σ′ (ω, ω′)

= −ησ,σ′(ω, ω′) (C.29)For a non-intera
ting theory, Ũ + λ3 = 0, we 
an give an exa
t expression for thegenerating fun
tional Γ0,r[Gr], sin
e the integrals are Gaussian and 
an be 
arried outexa
tly. We �nd,
Γr,0[Gr] =

∑

σ,σ′,n,n′

[logGr
σ,σ′(iωn, iω

′
n) + 1 − ([Gr,0

σ (iωn)]−1 + [Gc,0
σ (iωn)]−1)Gr

σ,σ′(iωn, iω
′
n)].(C.30)Note that

δΓr,0[Gr]

δGr
σ,σ′ (iωn, iω′

n)
= [Gr

σ,σ′(iωn, iω
′
n)]−1 − ([Gr,0

σ (iωn)]−1 + [Gc,0
σ (iωn)]−1). (C.31)In the intera
ting theory we 
an express the e�e
tive potential as

Γr[Gr] = Γr,0[Gr] + Φr[Gr], (C.32)with an additional fun
tional Φr[Gr], whi
h turns out to be the Luttinger Ward fun
tional
Φr

LW[Gr] (Luttinger and Ward 1960, Abrikosov et al. 1963). It is well known and 
an beexpressed diagrammati
ally in terms of 
losed skeleton diagrams. Its fun
tional derivativesyield self-energy and irredu
ible vertex fun
tions (Abrikosov et al. 1963). Note that theexpansion is 
arried out with the e�e
tive intera
tion Ũ1 ≡ Ũ +λ3 as expansion parameteras the intera
tion terms of the same stru
ture have been 
olle
ted again.In this approa
h the renormalised Green's fun
tion is a variable. The physi
al Green'sfun
tion, whi
h 
orresponds to the stationary point of the fun
tional Γr[Gr], when thesour
e is zero, satis�es the Dyson equation, whi
h for the renormalised theory reads,
Σ̃σ(iωn) = [Gr,0

σ (iωn)]−1 − [Gr
σ,σ(iωn, iωn)]−1. (C.33)In the stationary state invoking η = 0 in equation (C.29) we �nd therefore using (C.31)that the renormalised self-energy Σ̃σ(iωn) is given by

Σ̃σ(iωn) =
δΦr[Gr]

δGr
σ,σ(iωn, iωn)

− [Gc,0
σ (iωn)]−1 (C.34)Note that expli
itly we simply have [Gc,0

σ (iωn)]−1 = λ1iωn + λ2.



C.3 Fun
tional integral des
ription in the 2PI formalism 169We 
an now give the renormalisation 
onditions (2.40) and (2.41) in terms of theLuttinger Ward fun
tional Φr[Gr]. The equations (2.40) for the renormalised self-energyread
δΦr[Gr]

δGr
σ,σ(0, 0)

− [Gc,0
σ (0)]−1 = 0 (C.35)and

∂

∂iω

( δΦr[Gr]

δGr
σ,σ(iω, iω)

− [Gc,0
σ (iω)]−1

)

∣

∣

∣

∣

η=0,ω=0

= 0. (C.36)These equations determine λ1 and λ2. It is 
onvenient to de�ne the self-energy Σr
σ(iωn),whi
h is obtained from the perturbation expansion of Φr[Gr],

Σr
σ(iωn) =

δΦr[Gr]

δGr
σ,σ(iωn, iωn)

. (C.37)The full retarded Green's fun
tion 
an therefore also be written as
Gr

σ(iωn) =
zσ

iωn − ε̃d,σ + i∆̃ + λ1iωn + λ2 − Σr
σ(iωn)

. (C.38)In a self-
onsistent perturbative approa
h with (C.38) the self energy Σr
σ(iωn) dependson the three renormalisation parameters λi, and the renormalisation 
onditions (C.35) and(C.36) are additional self-
onsisten
y equations

Σr
σ(iωn = 0, λ1, λ2, λ3) = λ2 (C.39)and

∂

∂iω
Σr

σ(iω, λ1, λ2, λ3)|ω=0 = λ1. (C.40)The 
ondition (2.41) for the vertex has to be found by 
onsidering the parti
le holeirredu
ible vertex Ĩph,
Ĩσ3,σ4
σ1,σ2

(ω1, ω2, ω3, ω4) =
δ2Φ[Gr]

δGr
σ3,σ4

(ω3, ω4)δGr
σ1,σ2

(ω1, ω2)

∣

∣

∣

∣

η=0

(C.41)In the parti
le hole 
hannel this is related to the full renormalised vertex Γ̃ through theBethe Salpeter equation
Γ̃σ3,σ4

σ1,σ2
(ω1, ω2, ω3, ω4) = Ĩσ3,σ4

σ1,σ2
(ω1, ω2, ω3, ω4) (C.42)

+
∑

ω′
2,σ′

2,σ′
4

Ĩ
σ3,σ′

4

σ1,σ′
2
(ω1, ω

′
2, ω3, ω

′
2 + ω3 − ω1)G

r
σ′
2
(ω2)G

r
σ′
4
(ω′

2 + ω3 − ω1) ×

× Γ̃
σ′
4,σ4

σ′
2,σ2

(ω′
2, ω

′
2 + ω3 − ω1, ω3, ω4).This equation is represented graphi
ally in �gure C.1, where also the assignment of externalfrequen
ies is visible.
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PSfrag repla
ements
ω1, σ1ω1, σ1ω1, σ1 ω2, σ2ω2, σ2 ω2, σ2

ω3, σ3ω3, σ3ω3, σ3 ω4, σ4ω4, σ4ω4, σ4

Figure C.1: Bethe Salpeter equation for full renormalised vertex Γ̃ (box) expressed throughthe renormalised parti
le-hole irredu
ible vertex Ĩph (
ir
le) and full renormalised Green'sfun
tion Gr (double line).The renormalisation 
ondition (2.41) is then given by
Γ̃σ,−σ

σ,−σ(0, 0, 0, 0) ≡ Γ̃σ,−σ(0, 0) = Ũ . (C.43)This equation determines λ3.An RPT in this s
heme 
an be spe
i�ed entirely by an approximation to the LuttingerWard fun
tional. From this the self-energy, the irredu
ible and full vertex 
an be 
al
ulatedin terms of the full propagators and one has to iterate for self-
onsisten
y adjusting the
ounter-term parameters. Though in prin
iple possible this approa
h is - even for simpleapproximations of the LW fun
tional - di�
ult to 
arry out sin
e the 
al
ulation of thefull vertex with the Bethe-Salpeter equation is numeri
ally 
umbersome. Usually we aremainly interested in the renormalised self-energy and only really need the full vertex at zerofrequen
y in order to satisfy the renormalisation 
ondition. Therefore, we are 
al
ulatingmu
h more than we a
tually need in su
h an approa
h. A possibility to 
ir
umvent thisadditional e�ort is not to 
al
ulate the full vertex with all the dynami
 dependen
e, butrather relate it to the self-energy via a Ward identity. This might be a promising routefor future developments of the RPT, whi
h at the time of writing has not been exploredin detail.C.4 Non-equilibrium renormalised perturbation theoryHere we generalise the setup of the renormalised perturbation theory from 
hapter 2 tothe non-equilibrium 
ase, whi
h is the subje
t of 
hapter 4. The renormalised parametersare de�ned for zero temperature and in the equilibrium limit, eV → 0. The matrix Dysonequation (4.12) simpli�es then to an equation for the (−−) 
omponent,
G−−

d,σ (ω)−1 = G
(0),−−
d,σ (ω)−1 − Σ(−−)

σ (ω), (C.44)where
G

(0),−−
d,σ (ω)−1

∣

∣

∣

eV =0
= ω − εd,σ + i∆sgn(ω) (C.45)and

Σ(−−)
σ (ω) = θ(ω)Σret

σ (ω) + (1 − θ(ω))Σadv
σ (ω). (C.46)



C.4 Non-equilibrium renormalised perturbation theory 171We 
an therefore fo
us on the equilibrium retarded self-energy Σret
σ (ω) [Σadv

σ (ω) = Σret
σ (ω)∗℄and 
arry out the usual Fermi liquid expansion. As seen in 
hapters 2 and 3 for theequilibrium RPT it is useful to in
lude the magneti
 �eld dependen
e in the self-energy,whi
h we will do for the following de�nitions, whi
h essentially 
oin
ide with (2.33) and(2.34) with Σσ(ω) → Σret

σ (ω) . Hen
e, with
zσ(h)−1 = 1 − ∂ReΣret

σ (0, h)

∂ω
, (C.47)the renormalised parameters are given by

∆̃σ(h) = zσ(h)∆, ε̃d,σ(h) = zσ(h)(εd,σ + ReΣret
σ (0, h)), (C.48)The remainder of the self-energy Σrem

σ (ω, h) de�nes the retarded renormalised self-energy
Σ̃ret

σ (ω, h) [
f. (2.35)℄,
Σ̃ret

σ (ω, h) = zσ(h)Σrem
σ (ω, h). (C.49)The renormalised intera
tion Ũ(h) is de�ned as in equilibrium by the e�e
tive quasiparti
leintera
tion of the problem, whi
h is given by the full renormalised four point vertex fun
tionat zero frequen
y (2.37).These renormalised parameters, whi
h are the same ones as in the equilibrium RPT,are used for the low energy des
ription of the non-equilibrium systems by repla
ing theoriginal parameters. The e�e
tive a
tion be
omes S̃ = S̃0 + S̃Ũ with

Sr
0 =

∑

σ

∞
∫

−∞

dt

∞
∫

−∞

dt′ d
r
σ(t)G̃

(0)
d,σ(t− t′)−1dr

σ(t′) (C.50)where dr
σ(t) := t(dr

σ,−(t), dr
σ,+(t)), dr

σ,ν(t) = dσ,ν(t)/
√
zσ , and

G̃
(0)
d,σ(t− t′)−1 =

1

2π

∫

dω G̃
(0)
d,σ(ω)−1e−iω(t−t′).We have

G̃
(0)
d,σ(ω) =

(

G̃
(0),−−
d,σ (ω) G̃

(0),−+
d,σ (ω)

G̃
(0),+−
d,σ (ω) G̃

(0),++
d,σ (ω)

)

, (C.51)where the matrix elements are given by [
f. (4.8)-(4.10)℄
G̃

(0),−−
d,σ (ω) =

ω − ε̃d,σ − i∆̃σ(1 − 2feff(ω))

(ω − ε̃d,σ)2 + ∆̃2
σ

, (C.52)
G̃

(0),−+
d,σ (ω) =

2i∆̃σfeff(ω)

(ω − ε̃d,σ)2 + ∆̃2
σ

, (C.53)
G̃

(0),+−
d,σ (ω) =

−2i∆̃σ(1 − feff(ω))

(ω − ε̃d,σ)2 + ∆̃2
σ

, (C.54)
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d,σ (ω) = −G̃(0),−−

d,σ (ω)∗. The intera
tion term reads
Sr

Ũ
= −Ũ

∞
∫

−∞

dt (nr
d,↑,−(t)nr

d,↓,−(t) − nr
d,↑,+(t)nr

d,↓,+(t)). (C.55)The renormalisation 
onditions for the renormalised retarded self-energy apply in the equi-librium limit, and are given as in (2.40) and (2.41). Generally in the Keldysh formalism,the retarded self-energy is given by
Σret

σ (ω) = Σ−−
σ (ω) + Σ−+

σ (ω). (C.56)In order to satisfy the renormalisation 
onditions (2.40) and (2.41) we have to in
ludethe 
ounter-term a
tion
Sc =

∑

σ

∞
∫

−∞

dt

∞
∫

−∞

dt′ d
r
σ(t)Gc,0

σ (t− t′)−1dr
σ(t′) (C.57)

+λ3

∞
∫

−∞

dt nr
d,↑,−(t)nr

d,↓,−(t) − nr
d,↑,+(t)nr

d,↓,+(t))

= Sc,0 + Sc
λ3

(C.58)where the matrix elements of Gc,0
σ are generally given by Gc,αβ

σ (ω)−1 = λαβ
2 ω + λαβ

1 .
Gc,αβ

σ (ω) 
ontains more degrees of freedom than needed for the renormalisation 
ondi-tions. We will fo
us only on the relevant 
ombinations for (2.40) and (2.41), and set allother λα,β
i zero.Perturbation expansion in 1PI formalismThe renormalised perturbation theory 
an be set up in the one-parti
le irrdu
ible s
hemeas des
ribed in se
tion 2.2.2. The partition fun
tion of the model is then written as

Zr =

∫

D(dr
σ ,d

r
σ)ei(Sr [dr

σ,d
r
σ ]+Sc[dr

σ,d
r
σ ]). (C.59)A diagrammati
 expansion 
an be generated by in
luding a one-parti
le (1PI) sour
e termof the form

SJ =
∑

σ,ν=±

∞
∫

−∞

dt (d
r
σ,ν(t)Jσ,ν(t) + h.c.) (C.60)

=
∑

σ

∞
∫

−∞

dt (d
r
σ(t) · Jσ(t) + h.c.). (C.61)The generating fun
tional is generally written as

Zr[J ] =

∫

D(dr
σ,d

r
σ)ei(Sr [dr

σ,d
r
σ]+Sc[dr

σ,d
r
σ]+SJ [dr

σ,d
r
σ]).
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Zr[J ] = e

iSr

(Ũ+λ3)
[δJσ,ν ,δ

Jσ,ν
]+iSc,0[δJσ,ν ,δ

Jσ,ν
]Zr

0 [J ] (C.62)where we have treated all 
ounter-terms as intera
tion terms. By Gaussian integration wehave
Zr

0 [J ] = e
i

P

σ

∞
R

−∞

dt
∞
R

−∞

dt′ Jσ(t)G̃
(0)
d,σ(t−t′)Jσ(t′)

.The 
onne
ted Green's fun
tions is formally obtained from
Gα1,α2

σ1σ2
(t1, t2) =

δ2 logZr[J ]

δJσ1,α1(t1)δJσ2,α2(t2)

∣

∣

∣

∣

J=0

. (C.63)A diagrammati
 perturbation expansion is obtained by expanding the exponential fun
tionsas explained in 
hapter 2 and follows from analogous arguments. One only needs to bearin mind the matrix stru
ture of the theory, whi
h a

ounts for the additional degrees offreedom. We are mainly interested in 
al
ulating the retarded renormalised self-energy(C.56). Therefore, we 
an fo
us on the 
ombinations λret
i ≡ λ−−

i + λ−+
i for the 
ounter-terms and in the simplest 
ase determine the value dire
tly by the renormalisation 
ondition(2.40),

λret
1 = Σr,−−

σ (0) + Σr,−+
σ (0) (C.64)and

λret
2 =

∂

∂ω
(Σr,−−

σ (ω) + Σr,−+
σ (ω))

∣

∣

ω=0
, (C.65)where in all those equations we take the limit eV → 0. The voltage dependent renormalisedretarded self-energy is then given by

Σ̃ret
σ (ω, eV ) = Σr,−−

σ (ω, eV ) + Σr,−+
σ (ω, eV ) − λret

2 ω − λret
1 . (C.66)
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